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Abstract

We provide one of the first estimates of elasticities of substitution across inputs supplied

by suppliers within the same industry. This elasticity is particularly relevant for the trans-

mission and amplification of supply shocks across the production network. We obtain new

real-time administrative tax data on product-level prices and quantities with firm-to-firm

transactions. We leverage geographic and temporal variation from the Covid-19 lockdowns

in India to estimate these firm-level elasticities of substitution and quantify the fall in trade.

If suppliers are complements rather than substitutes in production, this shock can amplify

by further transmitting downstream and upstream through the supply chain. We find that

even at this very granular supplier level, inputs are highly complementary, with an esti-

mated elasticity of 0.55. Causally estimating these micro-level elasticities of substitution

at the firm level allows us to understand how shocks propagate through supply chains, af-

fecting aggregate GDP. We use our elasticities and simulate the impact of the Covid-19

lockdowns to find that under our estimated elasticities, the overall fall in output is substan-

tial and widespread.
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1 INTRODUCTION

The ability of firms to substitute inputs across suppliers is critical for the resilience of supply
chains and the transmission of supply shocks. If it is difficult for firms to substitute across sup-
pliers after an adverse supply shock, the shock will amplify by transmitting further downstream
through the supply chain. The importance of this mechanism was reflected during the Covid-19
pandemic, where supply chain disruptions drove dramatic reductions in GDP worldwide. For
instance, India reported a -7.3% growth rate for the 2020/21 financial year, one of the most sig-
nificant contractions worldwide and the largest decline in GDP since India’s independence.1 In
this paper, we quantify the importance of firm-level elasticities of substitution across suppliers
of intermediate inputs to explain large fluctuations in GDP. We provide new estimation strate-
gies and estimates for these elasticities by leveraging regional variation in supply-side shocks
induced by the Indian government’s massive lockdown policy. We show that this elasticity is
key to partly explaining the dramatic decline of the Indian economy during the Covid-19 pan-
demic. Using new big data computational techniques, we quantify this decline directly using
information on the economy-wide firm-to-firm network.

We pose two main research questions. First, are suppliers of intermediate inputs within
an industry complements or substitutes? The answer to this question determines how shocks
propagate throughout supply chains. We expect shocks to propagate less across firm networks
if input-suppliers are substitutable. However, if input-suppliers are complements, the effects
of adverse shocks can easily propagate through buyer-supplier networks. Second, we ask, how
does this newly estimated elasticity affect firm-level sales, and ultimately GDP, by propagating
and amplifying shocks through firm-level input-output linkages?

Two unique features of our setting allow us to answer these questions credibly. First, India
had a distinct mosaic of lockdown policies, whereby the roughly 600 districts were classified
into three different zones with varying degrees of restrictions. This allows us to isolate varia-
tion in the ability to trade and transport goods over this period. Second, we obtain new gran-
ular and high-frequency administrative data on the universe of establishment-to-establishment
transactions for a region in India, with unique information on unit values and HS-product clas-
sifications. These data, while not used before, allow us to estimate new elasticities at the firm
(rather than industry) level, and across different suppliers for a firm.

We find that inputs within the same HS-4 industry but across different suppliers are highly
complementary. Our estimated elasticity of substitution across suppliers is 0.55. In various
specification tests employing different combinations of fixed effects and different sources of
variation, we find that the estimated elasticities lie within a range of 0.49 to 0.65. Our new

1https://www.economicsobservatory.com/how-has-Covid-19-affected-indias-economy.
More broadly, GDP fell by -3.3% and -2.2% during the 2020/21 financial year for emerging market and developing
countries, respectively.
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elasticities show that even within the same HS-4 industry, inputs across firms are highly com-
plementary. As such, even at the very micro level, firm-specific negative shocks contribute to
GDP fluctuations. In contrast, Atalay (2017) estimate elasticities at the industry (rather than
firm) level. We also estimate the more aggregate firm-level elasticity of substitution across
different industries, and find complementarity across industries, in line with Atalay (2017).

As discussed by Taschereau-Dumouchel (2020) and Baqaee and Farhi (2019), the liter-
ature so far provides little guidance about estimates of the firm-level elasticity of substitution
between suppliers within industries, even though it is a crucial parameter driving the propaga-
tion of shocks. While other work estimates elasticities of substitution across industries (Atalay,
2017), between inputs from different countries (Boehm et al., 2019), or across intermediate
goods (Carvalho et al., 2021), such estimates do not yet exist for suppliers within the same
industry. Estimating elasticities of substitution across different suppliers has been especially
challenging for two reasons. First, it is difficult to find detailed information on firm-to-firm
transactions with product-specific unit values. Second, it is challenging to find exogenous
sources of variation in firm-level prices that allows one to credibly estimate these elasticities.

We provide estimates of firm-level elasticities of substitution across suppliers by leverag-
ing the nationwide, sudden and unprecedented lockdown imposed by the Indian government in
March 2020. Importantly, these lockdowns were not homogeneous: districts were categorized
into Green (mild lockdown), Orange (medium lockdown) and Red (severe lockdown). Since
the lockdowns were sudden and unexpected, they were likely implemented independent of eco-
nomic fundamentals, and induced strong variation in transactions between firms across India.2

We use this variation to estimate the firm-level elasticities of substitution across suppliers.

Yet, Covid-19 was not just a supply shock. Baqaee and Farhi (2020) point out the pan-
demic outbreak was a combination of exogenous shocks to the quantities of factors supplied,
the productivity of producers, and the composition of final demand by consumers across indus-
tries. To estimate the elasticity of substitution across suppliers of inputs for a particular product
produced by a firm, we leverage variation in input prices driven by the sudden restrictions in
economic activity due to lockdowns in districts where these suppliers were located. In addition,
we leverage variation in trade costs arising from restrictions in economic activity in districts
through which the goods need to pass through, from the seller to the buyer. While our instru-
ments help derive the necessary variation, to further isolate supply shocks from other shocks,
we control for an entire array of high-dimensional fixed effects, such as product-by-month and
buyer-by-month fixed effects, to account for demand-side shocks. Given the richness of our
product data, we can also include buyer-by-product and seller-by-product fixed effects. We
further control for various other factors, such as firms’ exposure to foreign shocks transmitted
through trade Hummels et al. (2014), and the caseload and severity of Covid-19 cases.

2https://www.bbc.com/news/world-asia-india-56561095, https://thewire.in/
government/india-Covid-19-lockdown-failure
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This paper has three main sections. First, we present reduced-form evidence on the im-
pact of adverse supply shocks on key firm-level variables such as unit values (prices) and the
number of transactions (quantities). We leverage the Indian government’s sudden lockdown
measure that affected firm-to-firm trade across districts, depending on whether firms fall in
the Red zone (strict lockdown), Orange zone (moderate lockdown), or Green zone (mostly no
lockdown). We find that the prices of intermediate inputs rose during the lockdown, especially
if either buyers or sellers were located in Orange or Red zones. In districts where the seller is
in a strict lockdown zone (orange or red), transactions fell dramatically, compared to either the
case where the buyer is in a lockdown zone or both are in green zones.

Second, we modify a standard multi-sector firm-level model of input-output linkages by
augmenting the production function with substitution across suppliers within the same indus-
try. We derive analytical expressions that relate the relative values of quantities purchased of
the same HS-4 product from different suppliers, to the equilibrium relative prices. That is,
within each HS-4 product category, we quantify how substitutable inputs are between the dif-
ferent suppliers. We find that this elasticity of substitution is close to 0.55. Thus, following
Baqaee and Farhi (2020), after considering second-order effects, adverse firm-level shocks get
amplified in the aggregate by propagating through firm-to-firm linkages while positive shocks
get dampened. We further explore whether these elasticities differ across industries, and find
that in a handful of industries, suppliers within the same industries are actually substitutes,
whereas in others, they are highly complementary. This shows that we should be mindful of
heterogeneity across industries in understanding how shocks propagate through supply chains.

Finally, we use the estimated elasticities to analyze how input complementarities at the
firm level affect aggregate economic outcomes, and so, how important these complementarities
are in explaining GDP declines during the Covid-19 pandemic. We find that a 25% productivity
shock relegated only to firms in the red zone reduces overall GDP by 10.96%. This fall would
be 2.02 pp less in a model where firms in the same industry are substitutes (ε = 1.75), and 0.75
pp more when firms in the same HS-4 industry are almost Leontief (ε = 0.001). Given that
the quarterly GDP of this state was close to 32.5 billion USD in 2020, the additional losses
due to firm-level complementarities translate into 655 million USD (about 19 USD per capita
per quarter), compared to the case when firms are substitutes. Next, we investigate whether
aggregate GDP losses in the face of large productivity shocks are less if policy-makers allow
large firms (high final sales) or more connected firms (more direct and indirect linkages) to
operate. We show that as the level of complementarity and the magnitude of the adverse shock
increases, it pays more to save the more connected firms. Much importance, both in policy and
academic circles, has been paid to large firms, as Hulten (1978) emphasized the importance
of firm sizes in the propagation of shocks through production networks. We show that in the
face of large adverse shocks and high levels of complementarity across suppliers, the more
connected firms are more important than large firms in shock propagation through the network.
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Related Work. Our paper connects with two strands of literature. First, we speak to the liter-
ature on shock propagation and amplification through supply chains and production networks
(Barrot and Sauvagnat, 2018; Carvalho et al., 2021; Peter et al., 2020; Boehm et al., 2019).
There are at least three challenges in this literature. First, most firm-to-firm data either do not
contain product-level (unit) prices from each supplying firm, or lack the required variation in
such prices to estimate elasticities of substitution across suppliers within an industry.3 Second,
and relatedly, limited identifying variation in prices at the buyer-supplier level allows existing
work to estimate substitution elasticities across industries, or across domestic and foreign in-
dustries, but not across suppliers within an industry. In contrast, we provide one of the first
estimates of the elasticity of substitution across suppliers within an industry: a parameter that
is crucial in determining how shocks propagate. Third, the lack of firm-level elasticities across
suppliers has so far constrained our assessment of the importance of nodal firms, such as the
largest or the most connected firms, in the propagation of shocks through production networks.

We contribute to the literature in each of these dimensions. First, we measure unit prices
and quantities at the seller-buyer-product-transaction level. We derive price changes from sup-
ply and transportation disruptions in lockdown-affected districts, and estimate the firm-level
elasticity of substitution between suppliers within an industry. We then quantify this elastic-
ity’s importance for amplifying firm-specific supply shocks through a roundabout production
network (Baqaee and Farhi, 2019). We address previously unanswered questions on the im-
portance of nodal or large firms in shock amplification. We exploit computational innovations
in big data to compute the second-order effects of productivity shocks using the entire matrix
of production linkages. This innovation helps quantify the non-linear effects of productivity
shocks directly using the network, without relying on approximations using final sales.4

Our paper is also related to research on trade collapses during adverse shocks (Behrens
et al., 2013; Giovanni and Levchenko, 2009; Bricongne et al., 2012), and shock transmission
through GVCs during Covid, via disruptions to imports/exports or aggregate production (Bona-
dio et al., 2021; Baqaee and Farhi, 2020; Cakmakli et al., 2021; Demir and Javorcik, 2020; Ger-
schel et al., 2020; Heise et al., 2020; Lafrogne-Roussier et al., 2021; Bas et al., 2022; Chakrabati
et al., 2021). In contrast, we analyze how domestic transactions were affected during Covid
lockdowns in a large developing country. Our key policy motivation stems from the obser-
vation that policymakers worldwide are interested in quantifying the trade-off between strict
lockdowns that prevent the spread of the virus but affect GDP through complex buyer-seller
networks, and more lenient measures that increase production and trade but potentially spread
the virus. More importantly, even beyond the immediate Covid crisis, our estimates of how sub-

3Carvalho et al. (2021) observe a binary measure of whether firms were connected via buyer-supplier rela-
tionships, rather than quantities and unit values associated with such transactions. They use a proportionality
assumption which precludes estimating the elasticity of substitution across suppliers within an industry, as a buyer
sourcing from two different suppliers in the same industry will source the same amount given the assumption.

4As firm-to-firm data become common (Panigrahi, 2021; Demir et al., 2021; Dhyne et al., 2021; Alfaro-Urena
et al., 2020), our methods can be used to quantify shock propagation through large/complex networks.
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stitutable suppliers are within an industry will help policymakers quantify the economy-wide
effects of any disruptive events (e.g., natural disasters or sanctions) on trade and production.

2 DATA AND CONTEXT

Firm-to-firm trade. Our primary data source is daily establishment-level transactions with
distinct information on establishment locations.5 This data is provided by the tax authority of
a large Indian state with a diversified production structure, roughly 50% urbanization rates,
and high levels of population density. To compare its size in terms of standard firm-to-firm
transaction datasets, the population of this Indian state is roughly three times the population of
Belgium, seven times the population of Costa Rica, and two times the population of Chile.

The data contains daily transactions between all registered establishments in this state
and all registered establishments in India and abroad, from April 2018 to October 2020. This
data is collected by the tax authority due to the creation of the E-way Bill system in April
2018, which was created to increase compliance for tax purposes. This is a major advantage
in comparison to standard VAT firm-to-firm datasets with severe under-reporting, especially in
developing countries. By law, any person dealing with the supply of goods and services whose
transaction value exceeds 50,000 Rs (700 USD) must generate E-way bills. Transactions that
have values lower than 700 USD can also be registered but it is not mandatory. The E-way
bill is generated before transportation (usually via truck, rail, air or ship), and the driver of the
vehicle must carry the bill with them, or the entire extent of goods can be confiscated. Our data
is generated from these E-way bills. This implies that our network is likely representative of
relatively larger firms, but this threshold is sufficiently low such that we are confident we are
capturing small firms as well.

Each transaction reports a unique tax code identifier for both the selling and buying es-
tablishments, all the items contained within the transaction, the value of the whole transaction,
the value of the items being traded up to 8-digit HS codes,6 quantity of each item, units, and
the mode of transportation. Each transaction also reports the ZIP code of both the selling and
buying firms, which we use to merge with other district-level data.

Since the data report both value and quantity of traded items, we construct unit values
for each transaction. We also calculate average unit values at the 4-digit HS/month/seller/buyer
level, the number of transactions and total value of the goods transacted. This is the foundation

5While we use the term ‘firm’ in most parts of the paper, these data are actually at the more granular establish-
ment level, and we can identify the parent firms for each establishment as well.

6The data partially reports items up to 8-digit HS codes. Until April 2021, in India it was only manda-
tory to report 4-digit HS codes of goods traded. See https://economictimes.indiatimes.
com/small-biz/gst/six-digit-hsn-code-in-gst-made-mandatory-from-april-1/
articleshow/81780235.cms?from=mdr. 97% of transactions report 4-digit HS codes, 40% report
8-digit HS codes. Given this, our main specifications are based on 4-digit HS codes.
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of our firm-to-firm dataset that we use in the analysis.

Lockdowns. On March 25th 2020, India unexpectedly imposed strict lockdown policies na-
tionwide. The designated severity of the lockdown varied by districts, and was implemented
nationwide at the district level, where each district was classified between Red, Orange, and
Green zones according to the severity of Covid cases in each district. Yet, at that time, there
were barely any Covid cases in India, as the entire country averaged about 50 cases a day (as
opposed to about 400,000 cases a day the following year).

FIGURE 1: India’s lockdown zones in March, 2020

Notes: Map shows the lockdown zones across Indian districts announced on March 25, 2020.

In Figure 1 we map the distribution of lockdowns across India. Districts in the red zone
saw the strictest lockdown measures, with rickshaws, taxis and cabs, public transport, barber
shops, spas, and salons remaining shut. E-commerce was allowed for essential services. Orange
and green zone districts saw fewer restrictions. In addition to the activities allowed in red zones,
orange zones allowed the operation of taxis and cab aggregators, as well as the inter-district
movement of individuals and vehicles for permitted activities. In addition to the activities
allowed in orange zones, buses were allowed to operate with up to 50% seating capacity and
bus depots with 50% capacity in green zones.7

Throughout the paper, we use this color scheme as the treatment across Indian districts.
In particular, each firm is located within a district, so treated firms are located within a Red,
Orange, or Green district between March and May 2020.

7https://economictimes.indiatimes.com/news/politics-and-nation/lockdown-3-0-guidelines-for-red-
zone/activities-prohibited/slideshow/75503925.cms
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Physical and cultural distance. We use different measures of distance which we include as
controls in our empirical results. The measures of geographic distance between districts cal-
culate the length of the shortest distance between district centers. The measure of linguistic
distance between Indian districts is from Kone et al. (2018) who using the commonly used
ethno-linguistic fractionalization (EFL) index (Mira, 1964). This index measures the probabil-
ity of two randomly chosen individuals from different districts speaking the same language.

Other controls. We control for different firm and district level time varying variables such
as data on monthly number of cases, deaths, and recoveries from Covid-19 for all India at
the district level from www.Covidindia.org. For each firm, we construct two variables
that measure the firm’s exposure to global demand and supply shocks that vary at the HS-4
product and country level, following Hummels et al. (2014). The construction of these exposure
variables are described in detail in online data Appendix C.

Summary statistics. We present some key summary statistics from the administrative trade
data in Table A1. Panels A and B report the unique numbers of sellers, buyers, total sales (in
million rupees), and total number of transactions separately in months January-March, April-
June, and July-September, for years 2019 and 2020. The most noticeable pattern from the
data is the large drop in all variables in 2020 in comparison to 2019, particularly during the
April-June period, which coincided with the lockdown policies.

The total value of sales and the number of transactions both fell by almost 60% during
April-June of 2020 compared to 2019. For reference, the fall in the value of sales was only
25% after the strict centralized lockdown was over (July-September) and only 15.6% before
the lockdown (January-March) compared to the corresponding months in 2019.

To further understand the composition of economic activity of the Indian state of our
analysis, in Table A2 we show what types of goods firms within the state sell and buy, and to
which destinations. In out state, firms are mostly in the business of selling vegetables, plastics,
and minerals; and of buying machinery, metals, and vegetables. In terms of the type of trade,
firms in our state mostly sell to firms in other Indian states. This contrasts with how firms in our
state buy intermediates, where the share of purchases that come from within the state is almost
the same as from other Indian states. Finally, exports and imports represent a non-negligible
but rather small share of both sells and purchases.

Before using the lockdown variation to understand how firm to firm transactions are af-
fected, we verify the stringency of these lockdowns in Figure A3 using google mobility data.
The data shows how the number of visitors to (or the time spent in) categorized places change
compared to baseline days. The baseline day is the median value from the 5-week period Jan
3 – Feb 6, 2020.8 As is clear from the graph, until March 2020, there were essentially no dif-

8Source: https://support.google.com/covid19-mobility/answer/9824897?hl=en&
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ferences in mobility trends across red, orange, or green zones. But starting in April 2020, we
see that there is a substantial reduction in different types of activities (time spent in retail and
recreation, grocery and pharmacy, parks, commuting, and workplaces) in red zones compared
to green zones; with orange zones in between. People in red zones also spend more time at
home compared to people in either orange or green zones. We notice that starting August 2020,
a few months after the centralized lockdown was over, these differences start to reduce, and by
December 2020 these differences, especially in workplace mobility, becomes small.

3 REDUCED-FORM EVIDENCE

In this section we describe our empirical strategy, and provide evidence showing the role of
lockdown policies on key outcome variables for firm-to-firm trade. We show that the sudden
Covid-19 lockdown policies between March and May 2020 led to a rise in unit values, and a
fall in the monthly number of transactions between firms.9 In subsequent sections, we exploit
this variation to estimate firm-level elasticities of substitution across intermediate inputs.

3.1 Empirical specifications

Our main reduced form specifications employ difference-in-differences specifications where
we compare the unit values and the number of transactions both at seller level and seller-buyer
level across Red, Orange and Green districts, before and after the lockdown. In our analysis at
the seller level, the omitted (control) group are sellers located in Green districts and the base
month is February 2020, two months before the enforcement of lockdown policies. At the
seller-buyer level, the omitted group are sellers and buyers located in Green districts and the
base month is February 2020.

Seller-level regressions. We estimate the following specification:

Ysi,t = ιi,o(s) + ιi,t +

∑
t 6=−1

βtRedo(s) +

∑
t 6=−1

γtOrangeo(s) + Xδ + εsi,t , (1)

where Ysi,t are either unit values or the log number of transactions for seller s in HS-4 industry i

in month t, ιi,t are 4-digit HS-by-month fixed effects, ιi,o(s) are industry-by-district fixed effects
(i.e. fixed effects based on the district o where seller s resides), X are controls that include
number of Covid cases, deaths, and recoveries, and exposure to international demand and sup-
ply shocks as discussed in Appendix C. We control for the Covid cases and deaths since these

ref_topic=9822927
9To see a similar application of this empirical strategy for domestic violence and economic activity in India,

see Ravindran and Shah (2020) and Beyer et al. (2021).
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are the variables on which the government based its lockdown decisions (Ravindran and Shah,
2020). The covariates of interest are Redo(s) and Orangeo(s) . The first one is an indicator vari-
able that equals 1 if seller s located in district o(s) experienced a severe lockdown, 0 otherwise.
The second one equals 1 if seller s located in district o(s) experienced a mid-level lockdown,
0 otherwise. The excluded category are Greeno districts, where mild lockdown was imposed.
The estimates of interest are βt and γt . Our base time category is February 2020 which is just
before lockdowns began. Standard errors are clustered at the seller’s origin district level.

Seller-buyer level regressions. At the seller-buyer level we estimate the specification:

Ysi,b,t =
∑

(x,z)∈Ω

∑
t 6=−1

βxz
t

(
γx

o(s)
×γz

d(b)

)
+ δo(s) + δd(b) + δi,t +β1 log distod + Xδ + εsi,b,t (2)

where Ysi,b,t are unit values or number of transactions in logs between seller s in HS-4 industry
i and a buyer b in month t. δo(s) , δd(b) , and δi,t are origin, destination, industry-by-month fixed
effects. distod is a vector of cultural and geographic distance variables, and X are controls that
include number of Covid-19 cases, deaths, recoveries and exposures to international demand
and supply shocks. The first term of the right-hand side contains our estimates of interest.
(x,z) ∈ Ω is a duple that contains the color x of seller’s district, and the color z of buyer’s
district. Ω is the set that includes all pairs except (Green,Green), such that this is the excluded
category when estimating Equation (2). γx

o(s)
and γz

d(b)
are thus dummy variables that equal 1

when seller s is located in district o located in lockdown zone x, and when buyer b is located
in district d located in lockdown zone z, respectively. The estimates of interest are βxz

t . Our
base time category is February 2020 which is just before lockdowns began. Standard errors are
two-way clustered at the origin and destination district level.

3.2 Reduced-Form Facts

In this section we present two facts from the specifications we laid out in the previous section.

Fact 1: Sellers’ unit values disproportionately rose and trade fell in more severe lockdown
zones. In the first two panels of Figure 2 we plot the coefficients βt and γt from Equation (1),
which represent changes in log unit values and log number of transactions with respect to cases
in Green districts in February 2020 (i.e. the base category). In May 2020, sellers’ unit values
in Red districts rose by around 25pp with respect to the base category, and in Orange districts
rose by around 10pp with respect to the base category.
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FIGURE 2: Seller-level reduced-form event studies

(a) Unit value, 4-digit HS (b) # Transactions, 4-digit HS

(c) Unit value, 8-digit HS (d) # Transactions, 8-digit HS

(e) Unit value, 8-digit HS, strong FEs (f) # Transactions, 8-digit HS, strong FEs

Notes: This figure is comprised of 6 plots. Each plot shows estimates for βt and γt from Equation (1). The values
of the estimates are all in comparison to sellers in Green districts in February 2020. The dependent variable on
the left side is in log unit values; on the right side, in log number of transactions. Each row varies by the definition
of an industry, and the fixed effects included in the regression. In the first row, an industry is 4-digit HS codes and
fixed effects HS/month and district. In the second row, an industry is 8-digit HS codes and fixed effects HS/month
and district. In the third row, an industry is 8-digit HS codes and fixed effects HS/month and district/HS. Standard
errors are clustered at the district level. All controls mentioned in the paper are included. The shaded area are
confidence intervals.
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At the same time, sellers’ number of transactions in Red districts declined by around
20pp, and in Orange districts declined by around 3pp with respect to the base category. Addi-
tionally, as expected by the severity of the lockdown policies by color, the rise in unit values,
and fall in number of transactions was larger for sellers in Red districts than for Orange ones. In
both figures, we find no evidence of pre-trends, implying that there were likely no differences
in the trends of unit values or number of transactions between red, orange, and green districts
before the lockdown.

The middle two panels of Figure 2 repeats the same exercise with a finer industry defini-
tion, using 8-digit HS codes. Results remain virtually the same. In the last row of Figure 2 we
include a stronger set of fixed effects (e.g., district-by-industry), and results remain the same.

FIGURE 3: Unit Value, Seller-Buyer Level Regressions

Notes: In each plot, the horizontal axis is the month, and the vertical one is the estimate of interest associated
with log unit values as in Equation (2) for each month. Regressions include industry/month, origin district, and
destination district fixed effects. Standard errors are two-way clustered at the origin and destination state level.
An industry is 4-digit HS codes. All controls mentioned in the paper are included. The vertical line in January
2020 splits pre and post-lockdown periods. The baseline category are sellers and buyers located in Green districts
on January 2020. The color of the line denotes the color of the district the seller is located, while the color of the
shaded confidence interval denotes the color o the district the buyer is located.
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Fact 2: Equilibrium unit values rose and number of transactions fell in more severe lock-
down zones. We now report the results from our seller/buyer-level specification. In Figures
3 and 4 we report the estimates for βxz

t in Equation (2), where the estimates are in comparison
to cases when both sellers and buyers were located in Green districts in February 2020.

In the first row of Figure 3 we plot the coefficients from regression (2) where the seller is
in the red zone, and the buyer is in red, orange, and green zones respectively. Similarly, in the
second row of Figure 3, we plot the coefficients from regression (2) where the seller is in the
orange zone, and in the third row, we plot the coefficients from regression (2) where the seller
is in the green zone (and the buyer is in red and orange zones respectively).

FIGURE 4: Number of Transactions, Seller-Buyer Level Regressions

Notes: In each plot, the horizontal axis is the month, and the vertical one is the estimate of interest associated to
log number of transactions as in Equation (2) for each month. Regressions include industry/month, origin district,
and destination district fixed effects. Standard errors are two-way clustered at the origin and destination state level.
An industry is 4-digit HS codes. All controls mentioned in the paper are included. The vertical line in January
2020 splits pre and post-lockdown periods. The baseline category are sellers and buyers located in Green districts
on January 2020. The color of the line denotes the color of the district the seller is located, while the color of the
shaded confidence interval denotes the color o the district the buyer is located.

There are two main lessons from these figures. First, even after controlling for bilateral
resistance terms, trade costs, and additional covariates, unit values rose and number of trans-
actions fell with respect to the base category (both buyer and seller in green zones). The rise
in unit values was as much as 45pp, and the fall in transactions as high as 12pp. Second, these
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changes seem to be proportional to the severity of the lockdowns for both sellers and buyers.
Once again, there is no evidence of differential pre-trends across zones leading up to the shock.

Our two facts jointly imply that prices where either seller or buyers were located in red
districts were higher during the lockdown in comparison to districts where the lockdowns were
mild (green zones). This suggests that the lockdown indeed induced variation in prices that we
will later leverage to estimate elasticities of substitution across intermediates.

4 MODEL

We build a quantitative general equilibrium model of firm-to-firm trade based on Baqaee and
Farhi (2019), where the productive sector is perfectly competitive.10 We adapt the general
nested CES structure to reflect the possibility that suppliers within the same industry could
be substitutes or complements, derive estimating equations, and use the model to simulate the
effects of negative productivity shocks on GDP. Firms combine inputs in a CES fashion under
three tiers. In the first tier, firms combine labor and aggregated intermediates. In the second
tier, aggregated intermediates are a combination of intermediates by industry composites. In
the third tier, industry composites are constructed by suppliers of intermediates.

There are N firms producing N goods using the production function

yn j = An

(
wnl (ln)

α−1
α + (1 − wnl)

(
xn j
)α−1

α

) α
α−1

, (3)

where n is the firm and j is the firms’ industry. ln is the labor used by firm n, xn j is the composite
intermediate input used by firm n in industry j, α is the elasticity of substitution between labor
and the composite material input and wnl is the intensity of labor in production. The composite
material input in turn consists of inputs from the I different industries in the economy, and is:

xn j =

(
I∑

i=1

w
1
ζ

i,n j

(
xi,n j
) ζ−1

ζ

) ζ
ζ−1

, (4)

where ζ is the elasticity of substitution between inputs from different industries, and wi,n j is the
importance of input from industry i for buyer b in industry j. xi,n j are intermediate inputs from
industry i going to firm n in industry j,11 which are in turns constructed as

xi,n j =

(
Ni∑

m=1

µ
1
ε
mi,n jx

ε−1
ε

mi,n j

) ε
ε−1

, (5)

10We do not rely on models featuring market power (Edmond et al., 2018; Alviarez et al., 2021) since the
evidence from the data suggests that the market structure in this Indian state is closer to perfect competition. The
median HHI across 4-digit HS industries is 0.1041, which implies that industries are unconcentrated.

11We exclude foreign intermediate goods since they are not exposed to Indian Covid-19 lockdown shocks.
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where xmi,n j are intermediate inputs from firm m in industry i sold to firm n in industry j, and
µmi,n j is the importance of input from supplier i in industry m in the production of buyer j

in industry n. We consider a fixed set of firms F and industries I, where N = |F | is the total
number of firms in the economy, and Ni is the number of firms in industry i. ε is the elasticity of
substitution across suppliers within the same industry. The above production functions work for
reproducible factors. For non-reproducible factors, in our case labor, the production function is
an endowment: Yf = 1.

Industry 0 represents the final consumption of the household and is given by

C =

(
N∑
i

w0i (ci)
σ−1
σ

) σ
σ−1

, (6)

where
∑

i woi = 1 and σ is the elasticity of substitution in consumption.

Model in standard-form. To write the economy in standard form as in Baqaee and Farhi
(2020), we define a new input output matrix Ω̂ which has dimension 2 + N + I, where the first
dimension represents the household’s consumption aggregator, the next dimension corresponds
to factors, here only labor, the next N dimensions are the N firms that supply inputs to the CES
aggregates and the next I dimensions are the CES aggregates of intermediate inputs of these
firms that directly go into the firm’s production function. Let us denote the vector of elasticities
by θ̂, where θ̂ = (σ,α,ζ,ε).

Formally, a nested-CES economy in standard form is defined by (Ω̂, θ̂). What distin-
guishes factors from goods is that factors cannot be produced. The (2 + N + I)× (2 + N + I)
input–output matrix Ω̂ is the matrix whose (i, j) element is equal to the steady-state value of
Ωi j = p jxi j

piyi
, which is the expenditure share of the ith firm on inputs from the jth supplier as share

of the total revenue of firm i, where, note that, every supplier is a CES aggregate. The Leontief
inverse is ψ = (1 − Ω)−1. Intuitively, the (i, j)th element of ψ (the Leontief inverse) is a measure
of i′s total reliance on j as a supplier. It captures both the direct and indirect ways through
which i uses j in its production. Let us also denote the sales of producer i as a fraction of GDP
by λi, where λi = piyi∑N

j p jc j
.

The input output covariance operator is given by

CovΩk(ψ(i),ψ( j)) =
2+N+I∑

l=1

Ωklψliψl j −

(
2+N+I∑

l=1

Ωklψli

)(
2+N+I∑

l=1

Ωklψl j

)
. (7)

This operator measures the covariance between the ith and the jth columns of the Leon-
tief inverse using the kth row of the input output matrix as distribution. The second-order
macroeconomic impact of microeconomic shocks in this economy is given by:
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d2logY
dlogA jdlogAi

=
dλi

dlogA j
=
∑

k

(θk − 1)λkCovΩ(k)(Ψ(i),Ψ( j)). (8)

For detailed derivation of this, see the Appendix of Baqaee and Farhi (2019). To get
an intuition of how firm-level shocks can propagate through supply chains, consider a spe-
cific example: firm j, located in the red zone, suffers a negative productivity shock, given by
d logA j < 0.

The second order term captures the reallocation effect: In response to a negative shock
to industry j, all industries k that are downstream of j may readjust their demand for all other
inputs. Crucially, the impact of such readjustments by any given k on the output of industry i

depends on the size of industry k as captured by its Domar weight λk, the elasticity of substitu-
tion θk in k′s production function, and the extent to which the supply chains that connect i and
j to k coincide with one another, as given by the covariance term.

4.1 Equations to estimate firm-level elasticity of substitution across suppliers

Using the model outlined above, in this section we derive the firm-level elasticity of substitution
across suppliers within an industry. We introduce a notation change to facilitate the exposition:
a firm n can be either a buyer b ∈ F or a seller s ∈ F . A firm b in industry j ∈ I maximizes
profits subject to its technology and to a CES bundle of intermediate inputs:

max
{lb j,xsi,b j}

pb jyb j − wb jlb j −

∑
i

∑
s

psi,b jxsi,b j

subject to (3), (4), and (5). ε from Equation (5) is the elasticity of substitution across different
suppliers within the same industry. This is the key elasticity we want to estimate. Note that the
results of this estimation procedure holds with any CES production function with an arbitrary
number of nests, as long as the lowest nest consists of suppliers within the same HS-4 industry.
Details about the optimization problem are in Appendix D.1. The maximization problem yields
the following expression:

log
(

PMsi,b j

PMi,b j

)
= (1 − ε) log

(
psi,b j

pi,b j

)
+ log

(
µsi,b j

)
, (9)

where pi,b j =
(∑

s′
(

p1−ε
s′i,b jµs′i,b j

)) 1
1−ε is a CES price index, PMsi,b j ≡ psi,b jxsi,b j, and PMi,b j ≡∑

s PMsi,b j, and log
(
µsi,b j

)
is the error term. This is our main estimating equation for the firm-

level elasticity of substitution parameter ε which we take to the data, as will be described in
detail in Section 5.

16



4.2 Equations to estimate firm-level elasticity of substitution across industries

In this section, we derive conditions from the model to estimate the firm-level elasticity of
substitution across industries. We rewrite the maximization problem of the firm such that it
maximizes

max
{lb j,xi,b j}

pb jyb j − wb jlb j −

∑
i

pi,b jxi,b j

subject to (3) , (4), and pi,b j =
(∑

sµsi,b j p1−ε
si,b j

) 1
1−ε . ζ from Equation (4) is the firm-level elasticity

of substitution across industries i we estimate. Notice that in this case, we need values for ε
and µsi,b j to calculate prices. We consider ε = ε̂, where ε̂ is our estimate, and we recover µsi,b j.
Details on the optimization problem are in Appendix D.2.1. The maximization problem yields
the following expression:

log
(

PMi,b j

PMb j

)
= (1 − ζ) log

(
pi,b j

pb j

)
+ log

(
wi,b j

)
, (10)

where pb j =
(∑

i′

(
p1−ζ

i′,b jwi′,b j

)) 1
1−ζ

is a CES price index, PMi,b j≡ pi,b jxi,b j, and PMb j≡
∑

i PMi,b j,

and log
(
wi,b j

)
is the error term. This is our estimating equation for the firm-level elasticity of

substitution ζ which we take to the data, as described in Section 5.

5 ESTIMATION

In this section, we discuss how we estimate the primary elasticities in our model. The vector of
parameters is θ̂ = (σ,α,ζ,ε). We set the elasticity of substitution between different consumption
varieties σ = 4 (Broda and Weinstein, 2006), and the elasticity of substitution between labor and
the composite intermediate input α = 0.5 (Baqaee and Farhi, 2019). We now estimate the firm-
level elasticity of substitution across suppliers (ε) and the firm-level elasticity of substitution
across industries (ζ) leveraging variation in the lockdown zones.

5.1 Estimating equations for ε and ζ

In order to estimate ε from Equation (9), the first major challenge we face is that the price
index pi,b j includes the unobserved quantity µsi,b j which denotes the importance of input from
supplier s in industry i in the production of buyer b in industry j. This unobserved quantity
could depend on a number of factors such as unobserved input demand shocks or the buyer’s
preference for certain inputs. In order to construct changes in price indices that are observable,
we follow Redding and Weinstein (2020) in assuming that the overall importance of an indus-
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try in a buyer’s input use does not change between two consecutive months, even though the
importance of inputs from suppliers within an industry can change.12 We arrive at the equation
below that links the overall expenditure share on a certain supplier’s input in an industry to the
corresponding relative price:

log

(
P̂Msi,b j,t

P̂Mi,b j,t

)
= ωb,t +ωi,t +ωb,i +ωs,i + (1 − ε) log

(
p̂si,b j,t̂̃pi,b j,t

)
+ log

(
λ̂i,b j,t

̂̃s∗i,b j,t

)
+ Xβ + ξsi,b j,t ,

(11)
where x̂t = xt

xt−1
are variables in changes with respect to the previous month.

[
ωb,t ,ωi,t ,ωb,i,ωs,i

]
is a set of fixed effects, including buyer-by-month, product-by-month, buyer-by-product, and

seller-by-product fixed effects. p̃i,b j,t =
∏

s∈Ω∗i,b j,t
p

1
N∗i,b j,t
si,b j,t is a geometric mean of unit values across

common suppliers, where Ω∗i,b j,t ≡ Ωi,b j,t ∩Ωi,b j,t−1 is the set of common suppliers for buyer b

that appear in both the current and previous month, and N∗i,b j,t ≡Ω∗i,b j,t is the number of common
suppliers for buyer b in month t. X are controls, including exposure to foreign demand and
supply shocks, the number and severity of Covid cases, and geographic and cultural distance.

Our setup has the advantage that we can decompose the change in price buyer b pays
for inputs from seller s between p̃i,b j,t , the change in expenditure share ̂̃s∗i,b j,t and a Feenstra
(1994) correction term λ̂i,b j,t that takes into account the fact that sellers enter and exit in the
data. More details are in Appendix D.1.3. Standard errors are two-way clustered at the origin
and destination state level.

Now, to estimate ζ from Equation (10), there are two issues to address. First, notice that
the price index pi,b j is a function of (unobservable) demand shocks µsi,b j,t , and ε. Second, the
price index pb j,t is also a function of unobservable industry-level demand shocks wi,b j,t , which
makes their computation challenging.

First, we construct price indices as pi,b j,t ≡
(∑

sµsi,b j,t p1−ε̂
si,b j,t

) 1
1−ε̂ , where ε̂ are estimated

previously, psi,b j,t come directly from the data, and demand shocks µsi,b j,t are constructed re-
cursively. This recursive construction of demand shocks come from predicting residuals from
Equation (11) and setting an initial value for shocks µsi,b j,0 (Appendix D.2.2).

Second, we construct buyer-level price indices pb j,t following Redding and Weinstein
(2020). We assume that the overall importance of the composite intermediates at HS-4 level
in the production function does not change between consecutive months. As such, we can
construct this price independent of industry-level demand shocks wi,b j,t after controlling for
buyers’ expenditure shares by industry. More details about this are in Appendix D.2.1.

12This assumption simply requires that, for instance, a shoemaker’s overall preference for leather in shoe-
manufacturing does not change, although its preference for leather from certain suppliers can change. That is,
demand-shocks may change µsi,b j,t (e.g., the demand for leather from certain suppliers), but the geometric mean
of µsi,b j,t across suppliers within an industry is stable between t and t − 1. This enables us to construct changes in
price indices that are not dependent on µsi,b j,t , but are directly observed in the data (details in Appendix D.1.2).
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We then derive the following expression we take directly to the data:

log

(
P̂Mi,b j,t

P̂Mb j,t

)
= ωb,t +ωi,t +ωb,i + (1 − ζ) log

(
p̂i,b j,t̂̃pb j,t

)
+ log

(
s̃b j,t
)

+ ξi,b j,t , (12)

where
[
ωb,t ,ωi,t ,ωb,i

]
are a set of buyer-by-month, product-by-month, and buyer-by-product

fixed effects. p̃b j,t ≡
∏Nb j,t

i=1 p̃
1

Nb j,t
i,b j,t is the geometric mean of unit values across industries that

buyer b sources from, and s̃b j,t ≡
∏Nb j,t

i=1 s̃
1

Nb j,t
i,b j,t is the geometric mean of expenditure shares across

industries. Detailed derivations are in Appendix D.2.

5.2 Addressing endogeneity concerns

OLS estimates of ε are biased if unobserved demand-side shocks (changing µsi,b j,t) drive changes
in prices and expenditure shares. The firm-level elasticity of substitution is a function of the
slope of the buyer’s input demand curve, and hence simultaneous shifts in the demand and
supply curves induced by the Covid-19 shock can also bias our estimates. For example, if
Covid-19 induced demand shocks led to contractions in buyers’ income and at the same time
supply-shocks lead to contractions in the sellers supply, the demand curves will look flatter
(estimated ε higher) compared to the unbiased value of ε. Additionally, measurement error in
input prices, proxied by unit values, may induce attenuation biases.

Our estimation strategy therefore involves using the sudden demarcations of lockdown
zones that restrict economic activity in certain Indian districts as an instrumental variable when
estimating this equation in two-stage least squares (2SLS). We use the disruptions in prices
caused by sudden lockdowns that made it costlier for sellers in Red and Orange zones to pro-
duce and send their intermediate goods. The idea is that, after controlling for the lockdown
zones the buyer is located in, exposure to international demand and supply shocks, the number
and severity of regional Covid-19 cases, the variation in prices facing a buyer are driven by
supply shocks induced by policy mandated sudden changes in the seller’s lockdown zones. In
addition, since the goods from the seller to the buyer have to transit through several districts
located in different lockdown zones facing different severity in the movements of trucks and
border controls, changes in the costs of transportation induced by these lockdowns provide
another source of exogenous variation to estimate the firm-level elasticity of substitution.

To formalize the intuition behind our identification strategy, following the standard prac-
tice in the trade literature, we assume that prices can be separated between prices at the origin
and a trade cost. In logs and in changes, this is

log
(

p̂si,b j,t
)

= log
(
τ̂s,b,t

)
+ log

(
p̂si,t
)
.
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Here we can see the type of variation driving the two types of instruments we use. First,
exogenous shifters to prices at the seller level psi,t , such as economic restrictions induced by
the lockdown zone the seller is located in, help us obtain unbiased estimates of the elasticity
ε. Second, exogenous shifters at the seller-buyer level, for example, changes in transportation
costs τs,b,t driven by the lockdown zones of the districts the goods pass through, also induce the
needed variation. We now describe each of these instruments and then implement them within
our estimation strategy.

Seller-level instruments. We need supply-side shifters to obtain unbiased elasticities of sub-
stitution. In that sense, shocks induced by the Covid lockdown policies that only impact sellers
would provide that variation. In Equation (13) below we formalize this intuition, so

log( p̂si,b j,t) = βRRedo(s)Lockt +βOOrangeo(s)Lockt + ενsi,b j,t , (13)

where Lockt is a dummy variable that equals 1 for the months from March to May of 2020,
which are the months when the lockdown policies were implemented, 0 otherwise, and Redo(s)

and Orangeo(s) are indicator variables that equal 1 whenever seller s was located in Red or
Orange districts, respectively.

Seller/Buyer-level instruments. The transportation of supplies from the location of the sup-
plier to the buyer implies going through different districts, each of which are affected by lock-
down policies in different ways. Intuitively, a route that contains more Red districts should
increase the cost of transportation in contrast with a route with no Red districts. We construct
instruments that capture that idea. We allow trade cost to change over time such that we can
leverage the Covid lockdown policy. In particular, we assume

τsb,t = traveltimeσsb,t .

After considering this functional form for trade costs into the expression of prices and log-
differencing, we obtain

log(p̂si,b j,t) = σ log( ̂traveltimesb,t).

We leverage the Covid-19 lockdown as an exogenous shifter that only influences travel time
between locations of seller s and buyer b, as reflected in Equation 14 below.

log( p̂si,b j,t) = βRRedo(s)d(b)Lockt +βOOrangeo(s)d(b)Lockt + ενsi,b j,t . (14)

Detailed derivations are in Appendix D.1.4. Redo(s)d(b) and Orangeo(s)d(b) are the share of
districts designated as Red and Orange, respectively, along the route between seller s and buyer
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b. We constructed these variables using Dijkstra algorithm for least-cost routes. Details about
the implementation of this algorithm are in Appendix C.

Finally, we also instrument the changes in relative prices in Equation 12 to estimate ζ .
We do this because of potential unobservable industry-level demand shocks that also induce an
upward bias to estimates of ζ . To construct our instruments, we leverage the seller-level and
seller/buyer-level instruments we used to estimate ε and calculate weighted averages across
suppliers to instrument on the change of relative prices for buyers. The intuition is that buyers
that purchased inputs either from a larger share of sellers in Red zones, or from sellers located
in districts where the route is comprised or a larger share of Red zones were more exposed to
Covid-19 lockdowns. More details are in Appendix D.2.3.

Discussion of instruments. The instruments induce buyers of certain types to be more af-
fected than others based on their production networks. The Local Average Treatment Effect
(LATE) may not represent the Average Treatment Effect (ATE) if buyers in Red, Orange, and
Green zones already traded intensively with sellers in certain lockdown zones, and there is
heterogeneity in responses. For instance, if buyers in Red traded mostly with sellers in Red,
then our instrument may estimate effects on firms induced by having more Red sellers, and so
it would upweight effects on buyers in Red. In Figure A2 we run two sets of balance check to
investigate these patterns. These checks show that, in general, sellers from Red, Orange, and
Green zones had similar interactions with buyers from Red, Orange, and Green zones.

We also consider whether certain industries source intensively from firms located in cer-
tain zones. For instance, if all the rubber supply of firms in this production network comes from
suppliers in Red zones, then buyers of rubber would find it increasingly difficult to find suppli-
ers. Once again, if there is heterogeneity in responses by industry, our estimate LATE elasticity
would weight the rubber industry higher than non-rubber industries. While not a source of bias,
it does affect the interpretation of the estimated parameter. In Figures A2g and A2h, we plot
the shares of total purchases of each industry that are sourced from firms in Red, Orange, and
Green zones. With the exception of the small HS industry 19 (arms and ammunitions), there is
no noticeable degree of concentration of suppliers from any particular zone.

5.3 Elasticity estimation results

In this section we show results of the estimation of both firm-level elasticities of substitution
across suppliers within an industry, and then across industries.
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5.3.1. Firm-level elasticities of substitution across suppliers

First, we report OLS estimates in Table 1. The implied elasticities exhibit a robust value of
0.78 across all the different specifications. In column (1), we include both buyer/month and
HS/month fixed effects. In column (2) we also include buyer/HS and seller/HS fixed effects. We
obtain a similar elasticity of 0.77. To test whether our estimates vary by industry aggregation, in
columns (3) and (4) the estimations are based on 6-digit and 8-digit HS codes. The elasticities
are around 0.75, so the estimates do not significantly change. Since these elasticities are below
1, these estimates suggest that, at the firm level, suppliers act as complements rather than
substitutes for buyers. This is important for aggregate incomes since, from Equation (8) we can
see that, once we take into account second order effects, an elasticity of substitution less than 1
implies that the aggregate impacts of negative shocks are amplified.

TABLE 1: OLS, firm-level elasticity of substitution across suppliers

(1) (2) (3) (4)

log
(

p̂
ˆ̃p

)
0.2171 0.2222 0.2506 0.2441

(0.0133) (0.0147) (0.0324) (0.0352)

ε 0.7828 0.7777 0.7493 0.7558
R2 0.4177 0.4601 0.4838 0.4958
Obs 2028039 1966591 851483 993583

HSN digits 4 4 6 8
Buyer/month FE Y Y Y Y
HSN/month FE Y Y Y Y
Buyer/HSN FE Y Y Y
Seller/HSN FE Y Y Y

Notes: OLS estimates from Equation (11). The first row reports the estimates associated with changes in relative
unit values in logs. Standard errors are two-way clustered at the origin and destination state level, and are reported
in parentheses below each estimate. The fifth row reports the implied value for ε, which is 1 minus the estimate
on the first row. The table contains four columns. Each column correspond to different specifications on how we
define an industry (4-digit, 6-digit, or 8-digit HS codes) and of fixed effects, as pointed out by the last five rows of
the table. All specifications include the controls mentioned in the paper.

Nevertheless, as we describe in the previous section, it is likely that OLS estimates are
contaminated by simultaneous demand shocks that happened during Covid-19. In Table 2
we report 2SLS estimates based on our proposed instruments. We find evidence that inputs
across different suppliers of a firm within the same 4-digit HS industry are highly comple-
mentary, ranging from 0.49 − 0.65, depending on the set of fixed effects and instruments we
use. Our preferred specification is column (3) with an elasticity of 0.55, where we use both
the seller and the seller-buyer level instrument, essentially deriving variation from both sell-
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ers’ production costs and transportation costs. We include buyer/month and HS/month fixed
effects that account for time-varying demand shocks, and also account for entry/exit with the
Feenstra (1994) term. Each specification reports a high Kleibergen-Paap F-statistic, indicating
that our instruments are statistically relevant. In columns (1) and (2) we use the seller-level and
seller/buyer-level instruments separately. The elasticities are 0.49 and 0.6 respectively, which
also reflect complementarity. Finally, in column (4) we also include buyer/HS and seller/HS
fixed effects, and the elasticity rises to 0.66.

TABLE 2: 2SLS, firm-level elasticity of substitution across suppliers

(1) (2) (3) (4)

log
(

p̂
ˆ̃p

)
0.5042 0.3945 0.4538 0.3409

(0.2129) (0.0933) (0.1389) (0.1068)

ε 0.4957 0.6054 0.5461 0.6590
Obs 2854292 2028039 2028039 1966591
K-PF 48.232 133.688 143.413 248.977

Seller IV Y Y Y
Bilateral IV Y Y Y
Buyer/month FE Y Y Y Y
HSN/month FE Y Y Y Y
Buyer/HSN FE Y
Seller/HSN FE Y

Notes: IV-2SLS estimates from Equation (11). The set of common suppliers of buyer b is Ω∗
i,b j,t = Ωi,b j,t ∩Ωi,b j,t−1.

That is, a supplier s of buyer b is considered common if they also traded during the previous month. The first
stage uses either bilateral or seller-level instruments, as pointed out by rows six and seven. Bilateral instruments
correspond to Equation (14), while seller-level instruments correspond to Equation (13). The first row reports
estimates associated with changes in relative unit values in logs. Standard errors are two-way clustered at the
origin and destination state level, and are reported in parentheses below each estimate. The fourth row reports the
Kleibergen-Paap F statistic from the first stage. The fifth row reports the implied value for ε, which is 1 minus the
estimate on the first row. An industry is 4-digit HS codes and the treatment period is March-May 2020. The table
contains four columns. Each column corresponds to different combinations of instruments and of fixed effects, as
pointed out by the last six rows. All specifications include the controls mentioned in the paper.

The IV estimates for ε are smaller than the OLS estimates. As discussed in Section 5.2,
the bias is in the expected direction if we expect the Covid-19 shock to also induce negative
demand shocks, thereby biasing up OLS estimates of ε. We may expect that our estimated
elasticity be lower for the sub-sample of buyers who did not have more than one supplier to
source inputs from. In Table A3, we restrict our sample to cases when a buyer traded with
at-least two sellers in two consecutive periods. Column (3), our preferred specification, yields
an elasticity of substitution of 0.58, very close to the estimate from our main specification.

To examine differences by the level of aggregation of the industry, we rerun our main
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specification in Table A4 using HS-6 and HS-8 as industry definitions. Finer industry classifi-
cations (e.g., HS-8) may imply that there are a fewer set of suppliers one may be able to source
from, and so we may expect a lower elasticity of substitution between suppliers. In columns
(1) and (3) we replicate our main specifications, with elasticities of 0.43 (for HS-6) and 0.06
(for HS-8) respectively. These numbers reflect even higher degrees of complementarity when
we consider a more granular notion of industry. Overall, these patterns suggest that inputs are
highly specific for buying firms.

Elasticity Heterogeneity by Industry. We now analyze whether the degree of substitution
across suppliers varies by industry. The idea is that firms that source from highly specific
intermediate inputs (i.e. processed foods) should report a lower elasticity of substitution across
suppliers than firms that source from more general inputs (e.g. textiles). In Table A5 and Figure
5 we show the estimates of this elasticity of substitution across twenty one broad industries
(HS section). We find that the OLS elasticity of substitution across industries lies in the range
of 0.7 − 0.9. Once we instrument for the unit values with the Covid-19-induced lockdown
variation, we find that there is wider heterogeneity across industries in the estimate of this
elasticity of substitution. Indeed, we find that that Processed foods yield an elasticity of 0.19,
while Textiles yield an elasticity of 0.81. Also, while for the majority of the industries we
find evidence for complementarity, there are some industries such as Plastics, Vegetables, and
Handicrafts where suppliers within an HS-4 industry are likely substitutes.

FIGURE 5: Elasticities ε by seller’s industry

Notes: The vertical axis is the firm-level elasticity of substitution by the industry of the seller, estimated by OLS.
The horizontal axis is estimated by IV-2SLS. An industry is an HS section. The size of each bubble is determined
by total sales in the corresponding industry. See Table A5 for industry-specific numbers.
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5.3.2. Firm-level elasticities of substitution across industries

In Table 3, we report our estimates for the firm-level elasticity of substitution across industries.
In column (1) we show the OLS estimate of ζ = 0.91, which reflects complementarity between
industries. Columns (2) and (3) show cases when we define industries more granularly. In this
case, the elasticities are around 0.8, which also reflects complementarity between industries.

TABLE 3: Firm-level elasticity of substitution across industries

(1) (2) (3) (4) (5) (6)

log
(

p̂
ˆ̃p

)
0.0842 0.2014 0.1996 0.3136 0.1712 0.1996

(0.0039) (0.0045) (0.0048) (0.1060) (0.0040) (0.0048)

ζ 0.9157 0.7985 0.8003 0.6863 0.4368 0.4721
Obs 1292329 794376 766804 1292329 794376 766804
K-PF . . . 27.284 17.950 15.868

Estimator OLS OLS OLS 2SLS 2SLS 2SLS
HSN digits 4 8 8 4 8 8
HSN/month FE Y Y Y Y Y Y
Buyer/month FE Y Y Y Y Y Y
Buyer/HSN FE Y Y

Notes: IV-2SLS estimates from Equation (10). Price indices are constructed by recovering the residuals used in
the corresponding specification when estimating ε and the corresponding estimate of ε. The first three columns are
OLS estimates of ζ; the last three, 2SLS of estimates of ζ using both weighted averages of both bilateral or seller-
level instruments across sellers. Bilateral instruments correspond to Equation (14), while seller-level instruments
correspond to Equation (13). Each column corresponds to a different combination of fixed effects and definition
of industry. Columns (1)-(2) and (4)-(5) correspond to our preferred specification when estimating ε and 4-digit
and 8-digit HS codes. In columns (3) and (6) we also include buyer/HS fixed effects. The first row reports the
estimates associated with changes in relative unit values in logs. Standard errors are clustered at the buyer’s district
level, and are reported in parentheses below each estimate. The fourth row reports the Kleibergen-Paap F statistic
from the first stage. The fifth row reports the implied value for ε, which is 1 minus the estimate on the first row.
The sixth row denotes whether estimators are OLS or 2SLS. The sixth row mentions the definition of industry.
The last three rows indicate the combination of fixed effects.

In columns (4)-(6) we report our estimates of ζ under 2SLS estimation after using a
weighted average of instruments across buyers’ sellers as discussed in Section 5.2. Our spec-
ification in column (4) reports a value of 0.68, reflecting that simultaneous negative demand
and supply shocks during Covid led to an underestimation of ζ under OLS. This elasticity is
higher than the 2SLS elasticity of substitution across suppliers (ε = 0.55), reflecting a lower
degree of complementarity across industries compared to suppliers.13 In columns (5) and (6),
similar values for this elasticity hold when we define an industry as 8-digit HS codes, and after

13This finding is consistent with the literature in macroeconomics (Houthakker, 1955; Bachmann et al., 2022;
Lagos, 2006).
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the inclusion of buyer/HS fixed effects. Finally, F-stats are high, which reflects the statistical
relevance of our weighted averaged instruments.

Unlike the elasticity of substitution across suppliers within an industry, there have been
previous attempts in the literature to estimate the elasticity of substitution across industries. In
particular, other work has estimated a wide range of values for parameters akin to ζ depending
on the aggregation of the industry and on the research question. Our elasticity is close to Boehm
et al. (2019) who estimate an elasticity between 0.40 − 0.62 for different inputs at HS-10 for
non-Japanese firms and 0.2 for Japanese firms. Atalay (2017) finds an estimate of around 0.1
for 30 aggregated industries using US data.

6 QUANTIFICATION

In this section, we use both data from our production network and our newly estimated elas-
ticities to quantify the role of these elasticities in the propagation of shocks. To do this, we
need to write down the Leontief matrix in standard form. Given the production structure of
our economy, we need four submatrices: (i) firm purchases from 4-digit HS industries, (ii) firm
sales to 4-digit HS industries, (iii) labor employed by each firm, and (iv) final sales by each
firm. The first two submatrices are directly constructed from the firm-to-firm trade data from
the pre-Covid period of March 2019 to February 2020. Labor employed and final sales by
firms are obtained by merging in firm-level data from Indiamart, which contains information
on firm-level employment and final sales.14 For more details for this, see Appendix C.

There are 1293 industries. The average firm is connected to 10 industries as a buyer and
5 industries as a seller. The most connected buyer and seller buys from and sells to over 500
industries. We use this 94,555 by 94,555 input output matrix consisting of firm-level sales and
purchases from these 1293 industries at the HS-4 level to understand how complementarities at
the firm-level affect the propagation of shocks through the firm production networks.

For more details on the derivation of the shock propagation equation and its numerical
implementation, see details in Appendix E. While previous work also quantify the effect of
firm-level shocks on aggregate GDP, they mostly rely on changes in firm-level final sales rather
than the direct production network. Using the production network directly, exponentially in-
creases computational complexity from the order of N to (N + I)× (N + I) (where N is the no of
firms, and I is the no of industries.) As such, we use computational innovations in big data to
implement this procedure.

Note that our quantification exercises in this section are conditional on the industries that
firms interact with being given at the extensive margin (even though a firm can change its set of
buyers/suppliers). We therefore need to empirically assess whether the set of HS-4 industries

14https://www.indiamart.com/
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a buyer buys from and the set of HS-4 industries that a seller sells to, changes between the
pre and the post Covid period. We do this by inspecting whether both sellers and buyers in
each industry continued to trade in their corresponding industries after Covid-19 lockdowns.
In Figure A4 we show the industry-level distribution of share of sellers that sold and buyers that
purchased goods from that industry during both time periods t and t − 1, where t is a 6-month
window before and after the lockdowns.15 In the figure we see that, for both sellers and buyers,
these two distributions are very similar to each other. The overall stability in Figure A4 shows
that the assumption that the industries that firms interact with does not change is tenable when
analyzing the impact of negative productivity shocks.

6.1 How much does the firm-level elasticity of substitution matter?

In this section, we assess the importance of the estimated firm-level elasticity of substitu-
tion across suppliers, by studying how this elasticity determines the impacts of adverse firm-
productivity shocks on aggregate GDP. 29% of all firms in our data lie in the red zone. In this
counterfactual, we conservatively shock only the productivity of firms located in the red zone
by 25% (with no direct impacts on other firms).

We find that a 25% productivity shock to firms in the red zone reduces GDP by 10.96%
(as an empirical benchmark, the state’s annual GDP fell by 11.3% in 2020/21). This fall would
be 2.017 pp less in a model where firms in the same HS-4 industry are considered substitutes
(ε = 2), and 0.75 pp more when firms in the same HS-4 industry are considered almost Leontief
(ε = 0.001). In terms of GDP losses, given that the quarterly GDP of this state was close to 32.5
billion USD in 2020-2021, the additional losses due to firm-level complementarities translate
into 655 million USD (about 19 USD per capita per quarter), compared to the case when firms
are substitutes. To put these numbers into perspective, Baqaee and Farhi (2019) showed that
complementarities only at the industry level (with an elasticity of substitution 0.001) amplify
the effect of a negative 13% shock in the oil-industry on GDP by about 0.61%. Note that,
the differences in GDP that arise from changing values of firm-level elasticties of substitution
across suppliers, only changes the second order effects on GDP.

How important are these second-order effects that we have estimated? To assess the
importance of these second-order effects, we simulate different levels of negative productivity
shocks for 4 different values of elasticities of substitution and plot the second-order percentage
point change in GDP due to these shocks in Figure 6. The top two plots show these differences
for a very high level of complementarity 0.001 and our estimated elasticity 0.55, respectively.
The bottom two pictures show the additional change in GDP due to the second order when
firms are substitutes (1.25 and 1.75). Two things are clear from these pictures: First, for the

15For the pre-Covid period, t is June 2019-October 2019, and t − 1 is June 2018-October 2018. For the post-
Covid period, t is June 2020-October 2020, and t − 1 is June 2019-October 2019.
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same negative productivity shock, the second-order effects are much larger when the firms are
more complementary. Second, given the same value of the elasticity of substitution, as the
magnitudes of the productivity shocks increase, the second order effects become more and
more important, that is, there are non-linear effects.

FIGURE 6: How important are second order effects?

(a) ε = 0.001 (b) ε = 0.55

(c) ε = 1.25 (d) ε = 1.75

Notes: These figures plot the percentage change in productivity on the x-axis. On the y-axis we plot the second
order change in GDP in percentage points, for the corresponding change in productivity. Sub-figures (a) and
(b) plot these effects when the elasticity of substitution across suppliers within the same industry ε = 0.001, and
ε = 0.55, respectively. Sub-figures (c) and (d) plot these effects for ε = 1.25 and 1.75 respectively.

Observing the bottom two pictures, we can clearly see that as firms become more and
more substitutes, the second-order effects actually dampen the negative first-order effects, and
more so, for higher values of productivity shocks. That is, unlike the first-order effects which
only depend on firm sizes, complementarities at the firm level non-linearly amplify the effects
of negative productivity shocks. This reflects similar amplification patterns that (Baqaee and
Farhi, 2019) documented, but at the industry level.

These graphs illustrate to us the importance of second-order effects that are largely driven
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FIGURE 7: Should we Protect Large or Connected Firms?

Notes: These figures plot the percentage change in productivity on the x-axis. On the y-axis we plot the percentage
point savings in GDP growth from allowing the top 10% largest or top 10% most connected firms to operate. The
left panel plots this change when the elasticity of substitution across suppliers within the same industry ε = 0.001,
and the right panel shows these changes when ε = 0.55

by complementarities at the firm level, especially for large short-lived negative productivity
shocks such as Covid-19. For a very long time, since (Hulten, 1978), policy-makers and re-
searchers have emphasized the importance of firm sizes in the propagation of shocks. In the
next counterfactual we are going to investigate how important are large firms versus connected
firms in the propagation of shocks.

6.1.1. Counterfactual GDP changes for large and connected firms

In this counterfactual, we look at the fall in GDP if instead of shocking the 27,320 firms in red-
zones, we instead shock the largest and the most connected 27,320 firms in the state. Largest
firms are measured by Domar weights (final sales share). The most connected firms are mea-
sured by the Leontief inverse, which measures the direct and indirect connections of suppliers.

In Figure 7, we plot the results from conducting two different counterfactuals for two
different values of elasticities of substitution: 0.001 and 0.55, where in the first counterfactual
the largest 10% firms in the red zones are allowed to operate and in the second counterfactual,
the most connected 10% firms in the red zones are allowed to operate. In the x-axis, we plot
different values of negative productivity shock, starting from -5% to -35%. In the y-axis, the
blue line represents the percentage point difference in GDP when the largest 10% firms are
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allowed to operate compared to the baseline case. The red line represents the same, but when
the most connected firms are allowed to operate. Two things are notable from these graphs:
First, as the level of complementarity increases, it pays more to save the more connected firms.
Second, for the same level of complementarity, as the magnitude of the adverse productivity
shock increases, it pays even more to save the more connected firms.

This counterfactual illustrates that when evaluating which firms to value more when it
comes to the effects on aggregate GDP, policy-makers should be looking at not just large firms
but also the connected firms. In fact, the connected firms become more important for a large,
yet short-lived, shock and when suppliers are highly complementary.

7 CONCLUSION

In this paper, we use highly disaggregated firm-to-firm transaction data from a large Indian state
and provide one of the first estimates of elasticities of substitution across suppliers within the
same industry at the firm level. We provide new estimation strategies and estimates for these
elasticities by leveraging regional variation in supply-side shocks induced by the Indian gov-
ernment’s massive lockdown policy. We find that inputs are highly complementary even at this
very granular level. This elasticity crucially determines aggregate impacts and the transmission
of shocks across the network, but has previously eluded the literature (Baqaee and Farhi, 2019).
The combined advantage of having product-level unit values and quasi-experimental variation
in supply-side shocks allows us to overcome previous challenges in the literature, and credibly
estimate this elasticity across suppliers within an industry.

Since inputs are complementary, adverse shocks to even a small subset of firms that are
highly linked in the supply chain can negatively affect the aggregate economy by propagating
through firm networks. When we conservatively shock only the productivity of firms located in
the red zone by 25%, we find that if suppliers within the same industry were substitutes instead
of complements, the fall in aggregate quarterly GDP in the state under study would be about 655
million USD lower, or about 19 USD per capita lower per quarter. Using new computational
techniques in the field of big data, we can quantify this decline directly using information on
the economy-wide firm-to-firm network without relying on any first-order approximations. Our
methods thus provide new techniques to quantify shocks through large and complex production
networks. Using data on the entire production network in the state, we identify the nodal and the
largest firms in the network and show that as the level of complementarity and the magnitude
of the negative productivity shock increase, it pays more to save the more connected firms. Our
findings have implications for policymakers worldwide, who often face difficult trade-offs in
crisis regarding which firms to bail out.
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Appendix for online publication only

A APPENDIX TABLES

TABLE A1: Summary statistics

Panel A: 2019
Jan-March April-June July-September

Number of sellers 135,849 131,996 133,897
Number of buyers 193,660 188,708 189,219
Total sales (mln. rupees) 962,688 908,361 1,036,831
Number of transactions 7,772,883 7,808,325 7,934,706

Panel B: 2020
Jan-March April-June July-September

Number of sellers 113,121 69,171 86,696
Number of buyers 164,153 114,353 135,056
Total sales (mln. rupees) 811,755 369,645 775,478
Number of transactions 7,362,508 3,201,081 4,782,336

Notes: This table is comprised of two panels. Panel A contains information about the number of sellers, buyers,
transactions, and total sales for periods January-March, April-June, July-September for year 2019. Panel B is the
same as Panel A, but for 2020.

i



TABLE A2: Distribution of economic activity by industry and type of transaction

HS section Sales share Purchase share
Animales 1.5034 .7723
Vegetables 15.2982 11.2945
Fats 2.2934 2.6251
Processed foods 4.2172 5.5548
Minerals 13.1241 10.2353
Chemicals 9.8288 9.0791
Plastics 13.1516 9.1410
Leather .1618 .1677
Wood 2.5110 1.2130
Wood derivatives 1.0783 1.3598
Textiles 3.6342 6.4576
Clothing 1.3428 .9107
Handcrafts 1.0190 1.9337
Jewelry 1.7005 1.4980
Metal 10.4473 12.1969
Machinery 10.9909 13.5771
Transport equipment 4.7124 8.4147
Surgical instrum. 1.4478 1.6478
Arms and ammo .0057 .0095
Miscellaneous 1.2263 1.4936
Art .3043 .4166
Type of transaction
Within-state 72.6822 52.2224
Inter-state 23.2183 44.5151
Foreign 4.0994 3.2623

Notes: The table is comprised of an upper panel and a lower panel. In the upper panel we show the share of sales
and purchases from/to our Indian state of analysis by HS section. In the lower panel we show the share of sales to
and purchases from our Indian state, by whether the buyer or seller is within the state, in another state of India, or
abroad. Statistics were calculated using data for all 2019.
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TABLE A3: 2SLS, firm-level elasticity of substitution across (at least two) suppliers

(1) (2) (3) (4)

log
(

p̂
ˆ̃p

)
0.2383 0.3381 0.4121 0.3688

(0.1206) (0.0627) (0.1236) (0.1146)
ε 0.7616 0.6618 0.5878 0.6311
Obs 851120 599918 599918 544819
K-PF 58.989 97.958 233.084 527.534
Seller IV Y Y Y
Bilateral IV Y Y Y
Buyer/month FE Y Y Y Y
HSN/month FE Y Y Y Y
Buyer/HSN FE Y
Seller/HSN FE Y

Notes: IV-2SLS estimates from Equation (11). The set of common suppliers of buyer b is Ω∗
i,b j,t = Ωi,b j,t ∩Ωi,b j,t−1.

That is, a supplier s of buyer b is considered common if they also traded during the previous month. We only
consider the cases when a buyer traded with at least two common suppliers in a given period. The first stage uses
either bilateral or seller-level instruments, as pointed out by rows six and seven. Bilateral instruments correspond
to Equation (14), while seller-level instruments correspond to Equation (13). The first row reports the estimates
associated with changes in relative unit values in logs. Standard errors are two-way clustered at the origin and
destination state level, and are reported in parentheses below each estimate. The fourth row reports the Kleibergen-
Paap F statistic from the first stage. The fifth row reports the implied value for ε, which is 1 minus the estimate
on the first row. An industry is 4-digit HS codes and the treatment period is March-May 2020. The table contains
four columns. Each column corresponds to different combinations of instruments and of fixed effects, as pointed
out by the last six rows. All specifications include the controls mentioned in the paper.
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TABLE A4: Alternative specifications: 2SLS, firm-level elasticity of substitution across suppliers

(1) (2) (3) (4)

log
(

p̂
ˆ̃p

)
0.5687 0.5476 0.9371 0.8063

(0.2086) (0.1818) (0.3856) (0.3305)
ε 0.4312 0.4523 0.0628 0.1936
Obs 879997 851483 1026381 993583
K-PF 37.629 121.309 42.335 87.990
HSN digits 6 6 8 8
Seller IV Y Y Y Y
Bilateral IV Y Y Y Y
Buyer/month FE Y Y Y Y
HSN/month FE Y Y Y Y
Buyer/HSN FE Y Y
Seller/HSN FE Y Y

Notes: IV-2SLS estimates from Equation (11). The set of common suppliers of buyer b is Ω∗
i,b j,t = Ωi,b j,t ∩Ωi,b j,t−1.

That is, a supplier s of buyer b is considered common if they also traded during the previous month. In all
specifications, the first stage uses both bilateral and seller-level instruments as pointed in rows seven and eight.
Bilateral instruments correspond to Equation (14), while seller-level instruments correspond to Equation (13). The
first row reports the estimates associated with changes in relative unit values in logs. Standard errors are two-way
clustered at the origin and destination state level, and are reported in parentheses below each estimate. The fourth
row reports the Kleibergen-Paap F statistic from the first stage. The fifth row reports the implied value for ε, which
is 1 minus the estimate on the first row. An industry is either 6-digit or 8-digit HS codes as pointed out by the sixth
row, and the treatment period is March-May 2020. The table contains four columns. Each column corresponds
to different combinations of HS codes and of fixed effects, as pointed out by the last five rows. All specifications
include the controls mentioned in the paper.
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TABLE A5: Firm-level elasticities of substitution across suppliers, by HS section

Section Name OLS elast. 2SLS elast.
1 Animals 0.6892 0.1648
2 Vegetables 0.7799 0.7149
3 Fats . .
4 Processed foods 0.7125 0.1917
5 Minerals 0.8326 0.3974
6 Chemicals 0.7735 0.5828
7 Plastics 0.7179 0.9796
8 Leather . .
9 Wood 0.8728 0.6154
10 Wood derivatives 0.7812 0.8915
11 Textiles 0.8249 0.8103
12 Clothing 0.8232 0.3360
13 Handcrafts 0.6737 .
14 Jewelry 0.8104 1.3721
15 Metal 0.8145 0.8142
16 Machinery 0.6072 0.8691
17 Transport equipment . .
18 Surgical instruments 0.5954 0.3799
19 Arms and ammo 0.4140 .
20 Miscellaneous 0.6903 0.8383
21 Art 0.5514 0.1486

Notes: Each row corresponds to an industry, which is defined as a HS section. The second column contains
the name of the industry. The third and fourth columns report the estimated elasticities by OLS and 2SLS as in
Equation (11). Both OLS and 2SLS estimators include HS/month, buyer/month, buyer/HS, and seller/HS fixed
effects. Standard errors are two-way clustered at both origin and destination states. All specifications include
the controls mentioned in the paper. Missing elasticities were not able to be estimated due to a lack of statistical
power.
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B APPENDIX FIGURES

FIGURE A1: Variation over time in aggregate outcomes

(a) Number of sellers (b) Number of buyers

(c) Number of transactions (d) Total sales

Notes: This figure is comprised by 4 panels. In each panel, the horizontal axis is a month, and the vertical axis
is a different aggregate outcome. In the first panel, we show the number of sellers that reported a transaction by
month. In the second panel, we show the number of buyers that reported a transaction by month. In the third
panel, we show the number of transactions that were reported in a given month. In the fourth panel, we show total
sales for a given month.
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FIGURE A2: Distribution of links and sales across lockdown zones

Share distributions of colors
(a) Sellers in Red (b) Sellers in Orange (c) Sellers in Green

(d) Buyers in Red (e) Buyers in Orange (f) Buyers in Green

% of sales/purchases, by color of destination districts
(g) Sales (h) Purchases

Notes: This figure is comprised by two set of panels. The first six figures are the first panel, and the last two figures
are the second panel. First we explain the first panel. In the three upper figures, each panel plots the distribution of
the share of buyers located in Red, Orange, or Green districts. Each figure corresponds to sellers located in their
corresponding color district. In the middle three figures, each figure plots the distribution of the share of sellers
located in Red, Orange, or Green districts. Each figure corresponds to buyers located in their corresponding color
district. The time period is April 2018 - February 2020. Now, about the second panel, in the left panel, for each
HS section (horizontal axis), we plot the share of total sales of firms located in our large Indian state by color of
selling districts. In the right panel, for each HS section (horizontal axis), we plot the share of total purchases of
firms located in our large Indian state by color of buying districts. The time period for this data is the full 2019
year.
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FIGURE A3: Google mobility trends by lockdown zone

(a) Retail and recreation (b) Grocery and pharmacy (c) Parks

(d) Transit stations (e) Workplaces (f) Residential

Notes: These plots are based on Google Mobility Trends data, which shows how visits and length of stay at
different places change compared to a baseline. The baseline is the median value, for the corresponding day of the
week, during January 3rd - February 6th 2020. The raw data is at the daily frequency for each district in India. We
collapse this data at the weekly frequency, and at the zone level. Each panel corresponds to mobility in different
places.
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FIGURE A4: Change in Industry Links Before/After Lockdowns

(a) Sellers (b) Buyers

Notes: The figure is comprised of two density plots. On the left we study sellers; on the right, buyers. In that
figure we plot the distribution of the share of sellers that sold goods from a given industry in both period t and
t − 1, where these periods are one year apart, and an industry are 4-digit HS codes. The green density are periods
before Covid-19 lockdowns, where t is between June 2019 and October 2019, and t − 1 is between June 2018 and
October 2018. The red density are periods after Covid-10 lockdowns, where t is between June 2020 and October
2020, and t − 1 is between June 2019 and October 2019.
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C DATA

Exposure variables. We have two exposure variables: EDsi,t and IMsi,t . The first one denotes
the exposure of firm s selling product i to global demand shocks in month t. The second one
denotes the exposure of firm s selling product i to global supply shocks in month t. First, we
construct these exposures by country, such that

EDsi,x,t =
(

Ysi,x,0∑
x′Ysi,x′,0

)
Xi,x,t

IMsi,m,t =
(

Ysi,m,0∑
m′Ysi,m′,0

)
Mi,m,t ,

where Ysi,x,0 is the value of goods of seller s of product i shipped to country x in the beginning
of the sample, Ysi,m,0 is the value of goods of seller s of product i shipped from country m in
the beginning of the sample, Xi,x,t is the value of export demand from country x for product i
in month t, excluding demand for Indian products, and Mi,m,t is the value of import demand
to country x for product i in month t, excluding demand for Indian products. We then do a
weighted sum of these measures across countries, such that

EDsi,t =
∑

x

(
Ys,x,0∑
x′Ys,x′,0

)
EDsi,x,t

IMsi,t =
∑

m

(
Ys,m,0∑
m′Ys,m′,0

)
EDsi,m,t

Labor and sales. Our firm-to-firm dataset lacks data on number of employees and final sales.
Then, the objective is to predict values for number of employees and final sales for all buyers
and sellers of the dataset. We do this by obtaining data on number of employees and total sales
from an external dataset for a subset of our firms, run an OLS regression of both labor and final
sales on observable variables in our firm-to-firm dataset, store the OLS estimates, and use them
to predict labor and final sales for all firms.

We scraped data on number of employees and total sales from the website IndiaMART,16

India’s largest B2B digital platform. We scraped around 300,000-400,000 firm profiles, and
then sent them to the tax authority to be matched with our firm-to-firm trade dataset. The
matching procedure yielded 50,720 unique firms.

Each firm reports its number of employees and annual turnover (sales), both reported
in brackets. The reported brackets for sales are: up to 50 Lakh, 50 Lakh-1 Crore, 1-2 Crore,
2-5 Crore, 5-10 Crore, 10-25 Crore, 25-50 Crore, 50-100 Crore, 100-500 Crore 500-1,000
Crore, 1,000-5,000 Crore, 5,000-10,000 Crore, more than 10,000 Crore. First, we convert each
reported number into rupees, since sales in the trade dataset is reported in rupees.17 Then, for
each firm we assign the median value of its corresponding sales bracket. For the last bracket,
we consider the upper bound to be 100,000 Crore. The reported brackets for labor are: up to 10

16https://www.indiamart.com/
17100,000 rupees = 1 Lakh; and 10,000,000 rupees = 1 Crore.
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employees, 11-25, 26-50, 51-100, 101-500, 501-1000, 1001-2000, 2001-5000, more than 5000
employees. For each firm we assign the median value of its corresponding labor bracket. For
the last bracket, we consider the upper bound to be 50,000 employees.

We then run the following OLS regressions:

log(laborn) = α0 +α1 log(salesn) +α2 log(distancen) + εl
i

log( f inaln) = β0 +β1 log(salesn) +β2 log(distancen) + ε f
i ,

where salesn are total sales of intermediates of firm n and distancen is the average distance in
kilometers of all firms’ registered transactions, laborn is the number of employees constructed
as previously explained, and f inaln is final sales. We constructed final sales by subtracting total
intermediate sales from total sales, where we construct the former directly from our firm-to-
firm dataset. In the vast majority of cases, this difference was positive, which reassures that
IndiaMART indeed reports total sales. Whenever the differences were negative, we input a
value of 0, which implies that all firm’s sales are of intermediates.

We obtain the following estimated elasticities: (α̂0, α̂1, α̂2) = (−2.1138,0.2502,0.2853),
and (β̂0, β̂1, β̂2) = (9.8848,0.3665,0.4227). They are estimated under robust standard errors,
and are all significant at the 1% confidence level. We then use these estimates to predict labor
and final sales to all firms in our dataset.

Dijkstra algorithm We now list the steps of a Dijkstra algorithm we used to construct our
the seller/buyer-level instruments. We obtained a set of shapefiles of district administrative
boundaries for India according to India’s 2011 census. We reprojected the shapefiles into an
Asian/South Equidistance Conic projection, which is the projection that best preserves the dis-
tance measurements. Once shapefiles are reprojected, the objective is to construct a transporta-
tion network between Indian districts.

First, we obtain the centroid of each district in India. Then , we construct a network
structure according to the set of centroids. There are many ways to construct a network, so we
need to take a stance on how to form the connections between centroids. For each centroid, we
generate connections to the k closest centroids according to Euclidean distances.18 We follow
Fajgelbaum and Schaal (2020) and consider k = 8 such that we consider the main cardinal
directions (i.e. north, south, east, west, north-east, south-east, north-west, south-west).

We now run the Dijkstra algorithm. For all district pairs, the algorithm provides us with
the list of all districts that comprise the route between the district pair, and the distance of each
leg that comprise the route. Using the name of the districts, we use the lockdown data to assign
a lockdown color to each district along the route, and obtain our seller/buyer-level instruments.
Our first instrument is the share of districts in a route that are Red, Orange, or Green. When
calculating these shares, we rule out the zone where the buyer resides so we don’t consider
demand-side shocks in our instrument. Using the distance of each leg, our second instrument
is the share of meters of the route that are Red, Orange, or Green. We consider a leg to be of

18Consider the set of nodes Φ, where K ≡ Φ is the number of nodes. The number of connections per node k
could range from 0 up to K, where each represent extreme cases of network formation. k = 0 is a network without
connections, so it is not possible to run a Dijkstra algorithm since it is not possible to go from one node to another.
k = K is a fully-connected network, where all nodes are connected with each other. Running a Dijkstra algorithm
on this scenario is trivial since the shortest distance between any pair of nodes is their connection itself. Therefore,
a feasible number of connections per node must be k ∈ (0,K).

xi



color x = Red,Orange,Green whenever the origin district was of color x. In this case we also
ignore the color of the district where the buyer resides.

D DERIVATIONS

D.1 Estimation of firm-level elasticities of substitution across suppliers

In this section we describe the steps to derive the firm-level elasticity of substitution across
suppliers. First, we describe the model and the equations we take to the data. Second, explain
how we construct price indices we need to estimate this elasticity. Third, we describe how we
deal with the entry/exit of suppliers for the estimation. Finally, we explain how we construct
the seller-level and seller/buyer-level instruments we use to causally estimate our elasticity.

D.1.1. Expression to estimate firm-level elasticities of substitution across suppliers

A firm b in industry j ∈ F maximizes profits subject to its technology and to a CES bundle of
intermediate inputs:

max pb jyb j − wb jlb j −

∑
i

∑
s

psi,b jxsi,b j

s.t.

yb j = Ab

(
wbl
(
lb j
)α−1

α + (1 − wbl)
(
xb j
)α−1

α

) α
α−1
,

xb j =

(∑
i

w
1
ζ

i,b jx
ζ−1
ζ

i,b j

) ζ
ζ−1

,

xi,b j =

(∑
s

µ
1
ε
si,b jx

ε−1
ε

si,b j

) ε
ε−1

The first order condition with respect to xsi,b j is

[
xsi,b j

]
:pb j

( α

α− 1

)
yb j
(
. . .b j

)−1 (1 − wbl)
(
α− 1
α

)
x

α−1
α

−1
b j(

ζ

ζ − 1

)
xb j
(
. . .b j

)−1 wi, j

(
ζ

ζ − 1

)
x

ζ−1
ζ

−1
i,b j( ε

ε− 1

)
xi,b j

(
. . .i,b j

)−1
µ

1
ε
si,b j

(
ε− 1
ε

)
x

ε−1
ε

−1
si,b j = psi,b j,

=pb jyb j
(
. . .b j

)−1 (1 − wbl)x
α−1
α

b j(
. . .b j

)−1 wi, jx
ζ−1
ζ

i,b j(
. . .i,b j

)−1
µ

1
ε
si,b jx

−
1
ε

si,b j = psi,b j,

where (. . . ) are components that we do not write in detail since they cancel out eventually. Now,
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consider the first order conditions with respect to xsi,b j and xs′i,b j and divide them, such that

µ
1
ε
si,b jx

−1
ε

si,b j

µ
1
ε

s′i,b jx
−

1
ε

s′i,b j

=
psi,b j

ps′i,b j
,

x
−1
ε

si,b j p
−1
ε

si,b j

x
−

1
ε

s′i,b j p
−1
ε

s′i,b j

=
p

1−
1
ε

si,b jµ
−

1
ε

si,b j

p
1−

1
ε

s′i,b jµ
−

1
ε

s′i,b j

,

(
xsi,b j psi,b j

)−
1
ε

(
p

ε−1
ε

s′i,b jµ
−

1
ε

s′i,b j

)
= p

ε−1
ε

si,b jµ
−

1
ε

si,b j

(
xs′i,b j psi,b j

)−
1
ε ,(

xsi,b j psi,b j
)(

p1−ε
s′i,b jµs′i,b j

)
= p1−ε

si,b jµsi,b j
(
xs′i,b j psi,b j

)
,(

PMsi,b j
)(

p1−ε
s′i,b jµs′i,b j

)
= p1−ε

si,b jµsi,b j
(
PMs′i,b j

)
,(

PMsi,b j
)∑

s′

(
p1−ε

s′i,b jµs′i,b j
)

= p1−ε
si,b jµsi,b j

∑
s′

(
PMs′i,b j

)
,(

PMsi,b j
)

p1−ε
i,b j = p1−ε

si,b jµsi,b jPMi,b j,

PMsi,b j

PMi,b j
=
(

psi,b j

pi,b j
µ

1
1−ε
si,b j

)1−ε

,

log
(

PMsi,b j

PMi,b j

)
= (1 − ε) log

(
psi,b j

pi,b j

)
+ log

(
µsi,b j

)
.

where PMsi,b j ≡ psi,b jxsi,b j, p1−ε
i,b j ≡

∑
s′ p

1−ε
s′i,b jµs′i,b j, and PMi,b j ≡

∑
s′ PMs′i,b j.

D.1.2. Constructing price indices

In this section we derive the expressions that allows us to construct price indexes based on
observable data. First, go back to the derivation in Appendix D.1, where(

PMsi,b j
)

p1−ε
i,b j = p1−ε

si,b jµsi,b jPMi,b j.

In the data we observe the production network over time, so we introduce a time dimen-
sion such that (

PMsi,b j,t
)

p1−ε
i,b j,t = p1−ε

si,b j,tµsi,b j,tPMi,b j,t ,

where t is a month. We can now express this equation in changes, such that(
P̂Msi,b j,t

)
p̂1−ε

i,b j,t = p̂1−ε
si,b j,tµ̂si,b j,tP̂Mi,b j,t ,

where x̂t ≡ xt
xt−1

. Our objective is for p̂i,b j,t not to depend on µ̂si,b j,t , which are not observable.
To do this, we rely on Redding and Weinstein (2020). The key assumption is that the overall
importance of an industry in a buyer’s input use is time-invariant. Concretely, the geometric
mean of µsi,b j,t across common sellers is constant. From the maximization problem of the firm,
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we obtain the following expression for the CES price index at the buyer level:

pi,b j,t =

 ∑
s∈Ωi,b j,t

µsi,b j,t p1−ε
si,b j,t

 1
1−ε

,

where Ωi,b j,t is the set of all sellers that provided to buyer b in time t. We apply Shephard’s
Lemma to this CES price function, which in turn yields an expression for expenditure share:

ssi,b j,t =
µsi,b j,t p1−ε

si,b j,t

p1−ε
i,b j,t

,

where ssi,b j,t ≡ PMsi,b j,t∑
s∈Ωi,b j,t

PMsi,b j,t
. We can then rewrite this expression such that

pi,b j,t = psi,b j,t

(
µsi,b j,t

ssi,b j,t

) 1
1−ε

,∀s ∈ Ωi,b j,t .

This expression in changes is

p̂i,b j,t = p̂si,b j,t

(
µ̂si,b j,t

ŝsi,b j,t

) 1
1−ε

.

Now, common suppliers for a buyer b in time t is the set of suppliers Ω∗i,b j,t that sold to
buyer b in the current and previous period (i.e. Ω∗i,b j,t ≡ Ωi,b j,t ∩Ωi,b j,t−1), where N∗i,b j,t ≡

∣∣Ω∗i,b j,t

∣∣
is the number of common sellers for buyer b in time t. We now apply a geometric mean to this
expression, such that

p̂
N∗i,b j,t
i,b j,t =

N∗i,b j,t∏
s=1

{
p̂si,b j,t

(
µ̂si,b j,t

ŝsi,b j,t

) 1
1−ε

}
,

p̂
N∗i,b j,t
i,b j,t =

N∗i,b j,t∏
s=1

p̂si,b j,t

N∗i,b j,t∏
s=1

µ̂
1

1−ε
si,b j,t

N∗i,b j,t∏
s=1

ŝ
1

ε−1
si,b j,t ,

p̂i,b j,t =
N∗i,b j,t∏
s=1

p̂
1

N∗i,b j,t
si,b j,t

N∗i,b j,t∏
s=1

µ̂

1
N∗i,b j,t
si,b j,t

 1
1−ε N∗i,b j,t∏

s=1

(
ŝ

1
N∗i,b j,t
si,b j,t

) 1
ε−1

,

p̂i,b j,t = ̂̃pi,b j,t
̂̃s 1

ε−1
i,b j,t

N∗i,b j,t∏
s=1

µ̂

1
N∗i,b j,t
si,b j,t

 1
1−ε

.

We now formally state the assumption we require to move forward, which is

µ̃i,b j,t =
N∗i,b j,t∏
s=1

µ

1
N∗i,b j,t
si,b j,t =

N∗i,b j,t∏
s=1

µ

1
N∗i,b j,t
si,b j,t−1 = µ̃i,b j,t−1.
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Then, the last term of our expression is

N∗i,b j,t∏
s=1

µ̂

1
N∗i,b j,t
si,b j,t =

N∗i,b j,t∏
s=1

(
µsi,b j,t

µsi,b j,t−1

) 1
N∗i,b j,t

,

=

∏N∗i,b j,t
s=1 µ

1
N∗i,b j,t
si,b j,t∏N∗i,b j,t

s=1 µ

1
N∗i,b j,t
si,b j,t−1

,

=
µ̃i,b j,t

µ̃i,b j,t−1
,

= 1.

So our final expression boils down to

p̂1−ε
i,b j,t =

̂̃p1−ε

i,b j,t̂̃si,b j,t

,

where p̃i,b j,t ≡
∏

s p
1

N∗i,b j,t
si,b j,t is a geometric mean of unit values across common suppliers, and

s̃i,b j,t ≡
∏

s s
1

N∗i,b j,t
si,b j,t is a geometric mean of expenditure shares across common suppliers. Notice

that we have reached to our objective, since now ̂̃pi,b j,t is independent of µsi,b j,t . Finally, the
expression we take to the data is

(
P̂Msi,b j,t

)
p̂1−ε

i,b j,t = p̂1−ε
si,b j,tµ̂si,b j,tP̂Mi,b j,t ,(

P̂Msi,b j,t

)̂̃p1−ε

i,b j,t
̂̃s−1

i,b j,t = p̂1−ε
si,b j,tµ̂si,b j,tP̂Mi,b j,t ,

P̂Msi,b j,t

P̂Mi,b j,t

=

(
p̂si,b j,t̂̃pi,b j,t

)1−ε(̂̃si,b j,tµ̂si,b j,t

)
,

log

(
P̂Msi,b j,t

P̂Mi,b j,t

)
= (1 − ε) log

(
p̂si,b j,t̂̃pi,b j,t

)
+ log

(̂̃si,b j,tµ̂si,b j,t

)
,

log

(
P̂Msi,b j,t

P̂Mi,b j,t

)
= (1 − ε) log

(
p̂si,b j,t̂̃pi,b j,t

)
+ log

(̂̃si,b j,t

)
+ log

(
µ̂si,b j,t

)
.

D.1.3. Addressing entry/exit of suppliers

In this section we explain how we address the fact that seller and buyer matches do not happen
in every period (i.e. entry and exit of sellers). The concern is that not taking into account the
fact that sellers and buyers do not trade in every period could induce a bias in the estimation of
ε. We address this by including a correction term by Feenstra (1994) in our regressions. First,
notice we can write down the expenditure share as
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ssi,b j,t ≡ λi,b j,ts∗si,b j,t ,

where λi,b j,t is the Feenstra correction term, and s∗si,b j,t is the expenditure share with respect to
total expenditure on common suppliers. Notice that these terms are constructed as

ssi,b j,t ≡
PMsi,b j,t∑

s∈Ωi,b j,t
PMsi,b j,t

,

λi,b j,t ≡

∑
s∈Ω∗i,b j,t

PMsi,b j,t∑
s∈Ωi,b j,t

PMsi,b j,t
,

s∗si,b j,t ≡
PMsi,b j,t∑

s∈Ω∗i,b j,t
PMsi,b j,t

.

In changes, the expression for expenditure shares is

ŝsi,b j,t = λ̂i,b j,t ŝ∗si,b j,t .

Then, the geometric mean for expenditure shares is

̂̃si,b j,t =
N∗i,b j,t∏
s=1

ŝ
1

N∗i,b j,t
si,b j,t ,

=
N∗i,b j,t∏
s=1

(
λ̂i,b j,t ŝ∗si,b j,t

) 1
N∗i,b j,t ,

= λ̂i,b j,t

N∗i,b j,t∏
s=1

(
ŝ∗si,b j,t

) 1
N∗i,b j,t ,

λ̂i,b j,t
̂̃s∗i,b j,t .

So the final expression we take to the data is

log

(
P̂Msi,b j,t

P̂Mi,b j,t

)
= (1 − ε) log

(
p̂si,b j,t̂̃pi,b j,t

)
+ log

(̂̃si,b j,t

)
+ log

(
µ̂si,b j,t

)
,

= (1 − ε) log

(
p̂si,b j,t̂̃pi,b j,t

)
+ log

(
λ̂i,b j,t

̂̃s∗i,b j,t

)
+ log

(
µ̂si,b j,t

)
,

= (1 − ε) log

(
p̂si,b j,t̂̃pi,b j,t

)
+ log

(
λ̂i,b j,t

)
+ log

(̂̃s∗i,b j,t

)
+ log

(
µ̂si,b j,t

)
.
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D.1.4. Addressing endogeneity concerns

The equation from the previous section is what we take to the data. Nevertheless, there are
further endogeneity issues that would contaminate our estimates for ε. In particular, Covid
lockdowns could have also induced changes in demand, which in turn would bias our estimates.
For example, if Covid shocks also induce negative demand shocks, our estimates would then
be biased upwards. In this section we derive our instruments. First, we consider non-arbitrage
in shipping, so prices at the origin and destination between sellers and suppliers are related as

psi,b j,t = psi,tτsb,t ,

where psi,t is the marginal cost (MC) of production of good i for seller s in month t, τsb,t is the
iceberg cost of transporting the good from seller s to buyer b in month t. Now, we can then
express this in changes, such that

p̂si,b j,t = p̂si,t τ̂sb,t .

In logarithms, we have
log
(

p̂si,b j,t
)

= log
(

p̂si,t
)

+ log
(
τ̂sb,t
)
.

These two components of price imply two instruments. First, our seller-level instrument
that uses variation in MC at the seller-product level due to lockdown measures at the seller’s
district. To isolate variation in marginal costs driven by seller’s lockdown zone, we interact
the lockdown dummy (Lockt) which takes the value 1 between March and May with dummy
variables Redos and Orangeos that equal 1 whenever seller s was located in a district o that was
either Red or Orange during the lockdown. Then, our excluded instruments are

log( p̂si,t) = βRRedo(s)Lockt +βOOrangeo(s)Lockt + ενsi,b j,t .

Now we explain how we construct the instrument at the seller/buyer level. We have to
take a stance about the functional form of the trade cost τsb,t . We assume that trade costs are
proportional to the travel time of the transportation of intermediate inputs, such that

τsb,t = TravelTimeσsb,t .

If we express this in changes, we get

τ̂sb,t = ̂TravelTime
σ

sb,t .

We exploit variation from the Covid-19 lockdown, which induced exogenous variation
in the travel time between location pairs of sellers and buyers. Given this, we assume the
following difference-in-differences setup for travel time:

̂TravelTimesb,t = exp
(
γRRedo(s)d(b)Lockt +γOOrangeo(s)d(b)Lockt +νsi,b j,t

)
,

where Redo(s)d(b) and Orangeo(s)d(b) are the share of number of districts or of distance designated
as Red and Orange, respectively, along the route between seller s and buyer b. We constructed
these variables using Dijkstra algorithms. Further details about this are in Appendix C. Com-
bining the expression for changes in travel time due to the lockdown and trade costs, we get the
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following expression for our seller/buyer level excluded instruments

log(τ̂sb,t) = βRRedo(s)d(b)Lockt +βOOrangeo(s)d(b)Lockt +νsi,b j,t

D.2 Estimation of firm-level elasticities of substitution across industries

In this section we describe the steps to derive the firm-level elasticity of substitution across
industries. First, we describe the model and the equations we take to the data. Second, we
describe how we construct price indices we need to estimate this elasticity. Finally, we describe
the instrument we use to causally estimate our elasticity.

D.2.1. Expressions to estimate firm-level elasticities of substitution across industries

We rewrite the initial maximization problem, so

max pb jyb j − wb jlb j −

∑
i

pi,b jxi,b j

s.t.

yb j = Ab

(
wbl
(
lb j
)α−1

α + (1 − wbl)
(
xb j
)α−1

α

) α
α−1
,

xb j =

(
I∑
i

w
1
ζ

i,b jx
ζ−1
ζ

i,b j

) ζ
ζ−1

,

pi,b j =

(∑
s

µsi,b j p1−ε
si,b j

) 1
1−ε

The first order condition with respect to xi,b j is

[
xi,b j
]

:pb j

( α

α− 1

)
yb j
(
. . .b j

)−1 (1 − wbl)
(
α− 1
α

)
x

α−1
α

−1
b j(

ζ

ζ − 1

)
xb j
(
. . .b j

)−1 w
1
ζ

i,b j

(
ζ

ζ − 1

)
x

ζ−1
ζ

−1
i,b j = pi,b j, pi,b j

= pb jyb j
(
. . .b j

)−1 (1 − wbl)x
α−1
α

b j(
. . .b j

)−1 w
1
ζ

i,b jx
−1
ζ

i,b j,

where (. . . ) are components that we do not write explicitly since they eventually cancel out.
Now, consider the same first order conditions with respect to xi′,b j and divide them, such that

xviii



pb jyb j
(
. . .b j

)−1 (1 − wbl)x
α−1
α

b j

(
. . .b j

)−1 w
1
ζ

i,b jx
−1
ζ

i,b j

pb jyb j
(
. . .b j

)−1 (1 − wbl)x
α−1
α

b j

(
. . .b j

)−1 w
1
ζ

i′ ,b j
x

−1
ζ

i′ ,b j

=
pi,b j

pi′ ,b j
,

w
1
ζ

i,b jx
−1
ζ

i,b j

w
1
ζ

i′ ,b j
x

−1
ζ

i′ ,b j

=
pi,b j

pi′ ,b j
,

w
1
ζ

i,b jx
−1
ζ

i,b j p
−

1
ζ

i,b j

w
1
ζ

i′ ,b j
x

−1
ζ

i′ ,b j
p

−
1
ζ

i′ ,b j

=
pi,b j p

−
1
ζ

i,b j

pi′ ,b j p
−

1
ζ

i′ ,b j

,

w
1
ζ

i,b j

(
xi,b j pi,b j

)−
1
ζ

w
1
ζ

i′ ,b j

(
xi′ ,b j pi′ ,b j

)−
1
ζ

=
p

ζ−1
ζ

i,b j

p
ζ−1
ζ

i′ ,b j

,

 w
1
ζ

i,b j

(
xi,b j pi,b j

)−
1
ζ

w
1
ζ

i′ ,b j

(
xi′ ,b j pi′ ,b j

)−
1
ζ


−ζ

=

 p
ζ−1
ζ

i,b j

p
ζ−1
ζ

i′ ,b j


−ζ

,

wi′ ,b j

(
xi,b j pi,b j

)
wi,b j

(
xi′ ,b j pi′ ,b j

) =
p1−ζ

i,b j

p1−ζ

i′ ,b j

,

PMi,b j

(
wi′ ,b j p

1−ζ

i′ ,b j

)
= PMi′ ,b j

(
wi,b j p

1−ζ
i,b j

)
,∑

i′
PMi,b j

(
wi′ ,b j p

1−ζ

i′ ,b j

)
=
∑

i′
PMi′ ,b j

(
wi,b j p

1−ζ
i,b j

)
,

PMi,b j

∑
i′

wi′ ,b j p
1−ζ

i′ ,b j
= wi,b j p

1−ζ
i,b j

∑
i′

PMi′ ,b j,

PMi,b j p
1−ζ
b j = wi,b j p

1−ζ
i,b j PMb j,

PMi,b j

PMb j
=

wi,b j p
1−ζ
i,b j

p1−ζ
b j

,

PMi,b j

PMb j
=
(

w
1

1−ζ

i,b j
pi,b j

pb j

)1−ζ

,

log
(

PMi,b j

PMb j

)
= (1 − ζ) log

(
pi,b j

pb j

)
+ log

(
wi,b j

)
,

where PMb j ≡
∑

i PMi,b j, and pb j =
(∑

i wi,b j p
1−ζ
i,b j

) 1
1−ζ

. As we did for the estimation of the
elasticity of substitution across suppliers, we introduce a time dimension, apply Shephard’s
lemma to this CES price function, and also assume that the overall importance of the composite
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intermediates is time-invariant, so

si,b j,t =
wi,b j,t p

1−ζ
i,b j,t

p1−ζ
b j,t

,

pb j,t = pi,b j,t

(
wi,b j,t

si,b j,t

) 1
1−ζ

,

p̂b j,t = p̂i,b j,t

(
ŵi,b j,t

ŝi,b j,t

) 1
1−ζ

,

p̂Nb j,t
b j,t =

Nb j,t∏
i=1

p̂i,b j,t

(
ŵi,b j,t

ŝi,b j,t

) 1
1−ζ

,

p̂Nb j,t
b j,t =

Nb j,t∏
i=1

p̂i,b j,t

Nb j,t∏
i=1

ŵ
1

1−ζ

i,b j,t

Nb j,t∏
i=1

ŝ
1

ζ−1
i,b j,t ,

p̂b j,t =
Nb j,t∏
i=1

p̂
1

Nb j,t
i,b j,t

(Nb j,t∏
i=1

ŵ
1

Nb j,t
i,b j,t

) 1
1−ζ
(Nb j,t∏

i=1

ŝ
1

Nb j,t
i,b j,t

) 1
ζ−1

,

p̂b j,t = ̂̃pb j,t
̂̃w 1

1−ζ

b j,t
̂̃s 1

ζ−1
b j,t ,

p̂b j,t = ̂̃pb j,t
̂̃s 1

ζ−1
b j,t ,

p̂b j,t =
̂̃pb j,t̂̃s 1

1−ζ

b j,t

,

where p̃b j,t ≡
∏Nb j,t

i=1 p̃
1

Nb j,t
i,b j,t is the geometric mean of unit values across industries that buyer b

sources from, and s̃b j,t ≡
∏Nb j,t

i=1 s̃
1

Nb j,t
i,b j,t is the geometric mean of expenditure shares across indus-

tries. Now, if we also introduce a time dimension into our estimating equation, express it in
changes, and consider our expression for unit values, we have

PMi,b j,t p
1−ζ
b j,t = wi,b j,t p

1−ζ
i,b j,tPMb j,t ,

P̂Mi,b j,t p̂
1−ζ
b j,t = ŵi,b j,t p̂

1−ζ
i,b j,tP̂Mb j,t ,

log

(
P̂Mi,b j,t

P̂Mb j,t

)
= (1 − ζ) log

(
p̂i,b j,t

p̂b j,t

)
+ log

(
ŵi,b j,t

)
,

log

(
P̂Mi,b j,t

P̂Mb j,t

)
= (1 − ζ) log

 p̂i,b j,t̂̃pb j,t̂̃s 1
1−ζ
b j,t

+ log
(
ŵi,b j,t

)
,

log

(
P̂Mi,b j,t

P̂Mb j,t

)
= (1 − ζ) log

(
p̂i,b j,t̂̃pb j,t

)
+ log

(̂̃sb j,t

)
+ log

(
ŵi,b j,t

)
.
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D.2.2. Constructing price index pi,b j,t

To estimate ζ , we need values for pi,b j,t , which are not directly observed in the data since

pi,b j,t ≡
(∑

sµsi,b j,t p1−ε
si,b j,t

) 1
1−ε , which is a function of ε and µsi,b j,t . For ε, we consider ε = ε̂, where

ε̂ is our estimated elasticity. For µsi,b j,t , we use the fact that the residuals when estimating ε are
a function of these shocks. Recall that

log

(
P̂Msi,b j,t

P̂Mi,b j,t

)
= (1 − ε) log

(
p̂si,b j,t̂̃pi,b j,t

)
+ Xβ +φsi,b j,t ,

where φsi,b j,t = log
(
µ̂si,b j,t

)
= log

(
µsi,b j,t

µsi,b j,t−1

)
= log

(
µsi,b j,t

)
− log

(
µsi,b j,t−1

)
are the residuals of this

estimating equation. By assumption, log
(
µsi,b j,t

)
are i.i.d and normally distributed shocks with

mean µ and variance σ2, so the mean and variance of log
(
µsi,b j,t

)
− log

(
µsi,b j,t−1

)
is 0 and 2σ2,

respectively. We now construct pi,b j,t by the following steps:

1. Run the 2SLS regression to obtain the estimate ε̂;

2. Recover predicted values for the error term φ̂si,b j,t ;

3. Calculate the empirical mean and variance of φ̂si,b j,t :
{
µ̂φ, σ̂

2
φ

}
;

4. Recover the values for mean and variance of log
(
µsi,b j,t

)
, such that: (i) µ = µ̂φ and σ2 =

σ̂2
φ

2 ;

5. Make a random draw for log
(
µsi,b j,0

)
, which is drawn from a normal distribution with

mean µ̂φ and variance
σ̂2
φ

2 ;

6. For a given µsi,b j,0, recover µsi,b j,t according to the following law of motion:

log
(
µsi,b j,t

µsi,b j,t−1

)
= φ̂si,b j,t ,

µsi,b j,t

µsi,b j,t−1
= exp

(
φ̂si,b j,t

)
,

µsi,b j,t = exp
(
φsi,b j,t

)
µsi,b j,t−1;

7. We then construct unit values by

pi,b j,t ≡

(∑
s

µsi,b j,t p1−ε̂
si,b j,t

) 1
1−ε̂

D.2.3. Constructing instruments

To obtain an exogenous shifter of relative unit values, which we use to obtain an unbiased
estimate of ζ , we rely on the instruments we use to estimate ε. Consider the set of instruments
Zsi,b j,t . Then, we consider the new set of instruments:
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Wi,b j,t = Zsi,b j,t =
1

Ni,b j,t

∑
s

Zsi,b j,t .

For intuition, consider the instrument that varies across both the color zone of the seller
and the buyer (i.e. the share of districts of color red in the route between the location of the
seller and of the buyer). Then, the new instrument is the simple average of these shares across
sellers. Intuitively, the higher the shares of red-colored locations within the routes, the higher
the shock on prices

E SIMULATIONS USING QUANTITATIVE MODEL

E.1 Deriving expression for shock propagation through GDP

In this section, we discuss details of the simulation using the quantitative model. In order to
do that, we first recall the different notations used in the paper. N is the number of firms, I
is the number of industries. λk is the Domar weight of firm or sector k. θk is the elasticity
of substitution corresponding to the kth reproducible sector. Ωli is the (l, i)thelement of the
(N + I + 2) input output matrix Ω. It therefore measures the direct reliance of l on i as a supplier
. ψli corresponds to the (l, i)thelement of the (N + I + 2) Leontief inverse, and captures the direct
and indirect reliance of l on i as a supplier. The aggregate change in GDP (∆logy) in response
to changes in productivity of firm j (δlogA j) up to a second order is given by the following:

∆logy =
N∑
j=1

∂logy
∂logA j

(∆logA j) +
1
2

N∑
i=1

N∑
j=1,i 6= j

∂2logy
∂logAi∂logA j

(∆logAi)(∆logA j) +
1
2

N∑
i=1

∂2logy
∂logA2

i
(∆logAi)2

(15)
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Following Baqaee and Farhi (2019), after replacing second order terms

=
N∑
j=1

λ j(∆logA j) +
1
2

N∑
i=1

N∑
j=1,i6= j

(
N∑

k=0

(θk − 1)λkCovΩ(k)(ψ(i),ψ( j))

)
(∆logAi)

(
∆logA j

)
+

1
2

N∑
i=1

(
N∑

k=0

(θk − 1)λkVarΩ(k)ψ(i)

)
(∆logAi)2

=
N∑
j=1

λ j(∆logA j) +
1
2

N∑
i=1

N∑
j=1,i6= j

(
N∑

k=0

(θk − 1)λk

((
N+F∑
l=1

Ωklψliψl j

)
(16)

−

(
N+F∑
l=1

Ωklψli

)(
N+F∑
l=1

Ωklψl j

)
(∆logAi)

(
∆logA j

)
+

1
2

N∑
i=1

(
N∑

k=0

(θk − 1)λk

((
N+F∑
l=1

Ωklψliψli

)
−

(
N+F∑
l=1

Ωklψli

)(
N+F∑
l=1

Ωklψli

)))
(∆logAi)2

=
N∑
j=1

λ j(∆logA j) +
1
2

B +
1
2

C

We will now write down the expressions for B and C in matrix form in order to evaluate
the second order effects. × denotes matrix multiplication and · denotes element by element
matrix operations.

Quantifying B:

To quantify B, the term that mainly captures the second order effects on GDP that operates
through changes in firm i′s Domar weight in response to productivity shocks to firm j, where
j ∈ N, j 6= i, we introduce the following intermediate matrices which we will define below: M,
N, Covar1, Covar21, Covar22, and Covar2. Jm,n denotes a matrix of ones of size m by n.

M = ψ · (∆logA)T (17)

N = J(N+I+2,N+I+2) ·
(

J(N+I+2,1)×
(
ψ · (∆logA)T

))
−

(
ψ · (∆logA)T

)
(18)

Covar1 = Ω× (M ·N) (19)

Covar21 = Ω×M (20)

Covar22 = Ω×N (21)

Covar2 = Covar21 ·Covar22 (22)

B =
(

(θ − 1) ·λ
)
×
(

Covar1 −Covar2
)

(23)
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Quantifying C: The term C, mainly captures the second order effects on GDP that operates
through changes in firm i′s Domar weight in response to productivity shocks to firm i itself.

C =
((

(θ − 1) ·λ
)
×
(

Ω× (ψ ·ψ) − (Ω×ψ) · (Ω×ψ)
))
×
(

∆logA ·∆logA
)

(24)

In matrix form, we can rewrite equation (15) as:

∆logy = λ×∆logA + .5
(

(θ − 1) ·λ
)
×
(

Covar1 −Covar2
)

+

.5
((

(θ − 1) ·λ
)
×
(

Ω× (ψ ·ψ) − (Ω×ψ) · (Ω×ψ)
))
×
(

∆logA ·∆logA
)

(25)

E.2 Numerical implementation in Python

Numerically implementing this exercise is challenging due to the sheer size of the firm-to-firm
trade network. We have data on 93260 firms across 1293 industries. This generates a 94,555
by 94,555 input output matrix. The elements inside the input output matrix are very small as
the fraction of an industry’s output going to a single firm is very small and each industry in
turn sources from a large number suppliers. Therefore, and to keep the calculations as pre-
cise as possible, we had to use float64 variable types with these matrices, which resulted in
matrices larger than most servers’ memories. For instance, the Leontief inverse matrix alone
took more than 66 GB of storage/memory size. A lot of the calculation’s steps required per-
forming matrix multiplication operations on these large matrices. Matrix multiplication is one
of the most demanding operations in terms of computing resources in the world of computer
science. We break down this computation via a number of state-of-the-art big data computing
techniques, thus achieving scalability when applying our techniques to arbitrarily large input
output matrices. As detailed firm-to-firm transactions data are becoming more widely available,
these techniques will advance the literature quantifying the propagation of shocks through firm
networks.

First, we are able to fit datasets larger than RAM using Dask which provides multi-
core and distributed and parallel execution on larger-than-memory datasets.19 We use Dask
distributed capabilities to add parallelism to the calculations in computing second order effects
which require few matrix multiplication operations on large 94,555 by 94,555 matrices.

Second, we use a computer powered with multiple GPUs. GPUs are essential for the
numerous matrix multiplications this process involves. To demonstrate this in numbers, com-
puting 10 columns of Leontief inverse matrix (only 0.000001 %) takes about 4 days on a pow-
erful server with multiple CPUs, 500 GB of RAM and 16 cores. Computing the entire Leontief
inverse on a server powered with 4 GPUs took about 1 hour. The part of our work of computing
the second order effect, which involves 3 operations of large matrix multiplication would not
be practical using CPUs only.

Third, we use the properties of sparse matrices to define matrix multiplications that can
ignore large contiguous chunks of zeros, a typical feature of input output matrices.

19https://tutorial.dask.org/00_overview.html
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Fourth, we developed a custom matrix multiplication function to overcome the limitation
of the relatively small memory size of GPUs. The custom matrix multiplication function splits
the matrix into chunks of full columns (typically in the order of few 1000’s of columns), and
multiplies the sparse input output matrix by each chunk and then concatenates all result chunks
to formulate the final result.
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