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Abstract

Path forecasts help guide many important policy decisions. However, analyses of fore-

cast accuracy often focus on one horizon at a time and ignore the dynamics along the

path. I propose two tests of path forecast accuracy which specify the joint density as a

general loss function to capture differences in forecast dynamics. Simulations highlight

the benefits of not relying on heteroskedasticity and autocorrelation consistent estima-

tors at long horizons as well as the trade-offs associated with using joint tests. I apply

the path tests to evaluate macroeconomic path forecasts, and the accuracy of Hurri-

cane Irma’s predicted path in 2017. The results illustrate that differences in forecast

dynamics play an important role in path forecast accuracy.
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“Any quibbles I might have with the Greenbook over point estimates for growth

are minor because the baseline forecast path in the Greenbook is consistent with

our own Atlanta model forecast.” Jack Guynn (President of the Federal Reserve

Bank of Atlanta) FOMC Meeting Transcript, December 9, 2003.

1 Introduction
Path forecasts help guide many important policy decisions. For example, central banks

care about the expected trajectory of the economy due to lags in policy implementation and

the monetary transmission mechanism. The Federal Reserve incorporates future economic

paths through optimal control monetary policy rules (see Yellen, 2012), while several central

banks, including Sveriges Riksbank and Norges Bank, publish expected future paths of policy

rates.1 Fiscal policies are judged in part by their expected impact on the trajectories of the

deficit and the debt (see Martinez, 2015), whereas emergency management agencies use a

hurricane’s projected path to decide when and where to order evacuations. Thus, it is crucial

that forecast paths are as accurate as possible.

While forecast accuracy is typically assessed at each forecast horizon individually, this is

not sufficient to ensure that the entire path is accurate. A path forecast is a joint statement

about multiple forecast horizons. It includes forecasts for each horizon as well as the dy-

namics across horizons. While forecast dynamics are often ignored, Faust and Wright (2013)

and Schorfheide and Song (2015) find that nowcast accuracy matters for longer-horizon

forecast accuracy. This indicates that forecast dynamics can propagate forecast inaccuracy

across horizons. Therefore, assessments of path forecast accuracy need to account for these

interactions and for the dependencies across horizons.

Joint uncertainty bands can capture the dynamic dependencies along the forecast path.

Kolsrud (2007) was the first to propose methods for computing simultaneous prediction

bands. Since then, a substantial literature has developed; see Jordà and Marcellino (2010),

Staszewska-Bystrova (2011), Jordà et al. (2013), Kolsrud (2015), Wolf and Wunderli (2015),

and Knüppel (2018) among others. These methods incorporate the dynamics across forecast

horizons into the uncertainty around the forecast path.
1For example, see the Riksbank and Norges Bank Monetary Policy Reports in September 2019.
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Despite recent advances in measuring path uncertainty, joint tests of forecast accuracy

do not fully capture dependencies across horizons. The multi-horizon joint forecast accuracy

tests by Capistrán (2006) and Quaedvlieg (2019) are simple or weighted averages of single

horizon loss differentials, which ignore the dynamics between forecast errors across horizons.

I fill this gap in the literature by proposing a joint test of equal path forecast accuracy. I

start by illustrating the link between path forecast-error loss functions and joint forecast-error

densities. Building on this insight, I extend the framework of Giacomini and White (2006)

to formulate a joint test of equal path forecast accuracy. This test is linked to existing joint

multi-horizon tests while also capturing forecast dynamics across horizons. It is also related

to Hungnes (2018)’s multi-horizon forecast encompassing test in that better path forecast

accuracy is necessary but not sufficient for one path to forecast-encompass another path; see

Ericsson (1992). I also propose a modified version of the joint path test to circumvent the

heteroskedasticity and autocorrelation consistent (HAC) estimator of the variance, which

has poor small sample performance when there is large persistence; see Müller (2014).

Monte Carlo simulations illustrate the trade-offs associated with these tests. Path forecast

accuracy tests are less able to detect differences in forecast biases which tend to be highly

correlated across horizons and so are offset by higher forecast-error covariances. However,

joint path tests are better able to capture differences in variances, covariances, and dynamics

across forecast models. This is especially true for differences in forecast dynamics across

horizons, which other tests do not capture.

I apply the path tests in two applications. First, I test for differences in the accuracy

of the Federal Reserve Board’s Greenbook path forecasts of real GDP growth, inflation and

interest rates and real-time forecasts from four Dynamic Stochastic General Equilibrium

(DSGE) models, the Survey of Professional Forecasters (SPF), and a Vector Equilibrium

Correction Model (VEqCM). I decompose the differences to show that the joint forecast-

error dynamics across horizons drive the overall differences by exacerbating them for some

models and ameliorating them for others. In the second application, I test for differences in

the accuracy of path forecasts for Hurricane Irma in 2017. The tests show that while the

official forecast dominates, other methods can match or exceed its accuracy depending on

how the forecast path is weighted.
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The rest of the paper is structured as follows. The next section introduces measures

of path forecast accuracy. Section 3 formulates the joint path forecast accuracy test and

compares it against other approaches. It also develops a special case of the general path

test. Section 4 evaluates of the performance of the test statistics against alternative loss

functions in various simulations. Section 5 applies the tests to evaluate the performance of

macroeconomic path forecasts. Section 6 uses the tests to evaluate alternative path forecasts

of Hurricane Irma in 2017. Section 7 concludes. Proofs of the main results follow in a

Mathematical Appendix.

2 Measuring Path Forecast Accuracy
Let yC be a  -dimensional random vector. Denote point forecasts for horizon ℎ of this

vector as ŷ<C (ℎ) = ÊC (yC+ℎ | yC , yC−1, . . .) where ÊC (·|·) is the empirical conditional expecta-

tions operator, the sample size used to estimate the parameters required to generate ŷ<C (ℎ)

is < and {C : < ≤ C ≤ )}. Then the  × 1 vector of point forecast errors is

ũ<C (ℎ) = yC+ℎ − ŷ<C (ℎ). (2.1)

Point forecasts can be evaluated using any number of loss functions, ! (yC+ℎ, ŷ<C (ℎ)), where

the most common is the quadratic MSE loss function. For multivariate systems this is

�̂
<

#,ℎ =
1

#

)∑
C=<

ũ<C (ℎ)ũ<C (ℎ)′, (2.2)

where # = )−<+1 is the sample of forecast-error observations. Summarizing the information

within the MSE matrix using the trace of �̂
<

#,ℎ ignores any error covariances across variables.

It is possible to capture the dependencies between variables using the (log) determinant:����̂<ℎ,# ���. The log determinant was popularized by Doan et al. (1984) and is commonly used in

evaluations of vector autoregressive (VAR) and DSGE model forecasts; see Adolfson et al.

(2007), Del Negro et al. (2007), Schorfheide and Song (2015), and Berg (2016). Alternatively,

see Komunjer and Owyang (2012) for a class of asymmetric multivariate loss functions.

If Ŷ<
C (�) and YC,� are the 1 to �-step predicted and observed paths, the path errors are

Ũ<
C,� = YC,� − Ŷ<

C (�) =


yC+1
...

yC+�


−


ŷ<C (1)
...

ŷ<C (�)


. (2.3)
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I use the general MSE loss function proposed by Clements and Hendry (1993) to evaluate the

path forecast errors. Their general forecast-error second-moment matrix extends the MSE

matrix in (2.2) to multiple forecast horizons

�̂
<

#,� =
1

#

)∑
C=<

Ũ<
C,�Ũ

<′
C,� , (2.4)

where each  -dimensional block along the main diagonal of (2.4) represents �̂
<

#,ℎ for ℎ =

1, ..., �, the off diagonals are co-movements between horizons and variables, and the deter-

minant
����̂<

#,�

���, i.e. the GFESM, summarizes this information across variables and horizons.

Clements and Hendry (1995, 1997, 1998) show that the GFESM captures changes in forecast

dynamics, whereas trace MSE metrics do not. Christoffersen and Diebold (1998) propose an

alternative metric that captures cointegrating relationships and forecast dynamics.

2.1 The Joint Density as a General Loss Function
Predictive distributions can be thought of as general forecast error loss functions. How-

ever, the standard marginal predictive distribution is unable to handle loss functions across

multiple horizons (or transformations thereof). Granger (1999, p. 171) argues that it is there-

fore necessary to consider a joint predictive distribution. Choosing an elliptically contoured

joint forecast-error distribution, as in Jordà et al. (2013), generates a joint forecast-error

density which is directly related to the GFESM:

5C,*�

(
Ũ<
C,�

)
= �

����̂<

#,�

���−1/2 4G? {
−6C

(
Ũ<′
C,�

{
�̂
<

#,�

}
−1Ũ<

C,�

)}
, (2.5)

where � is a constant, 6C (·) is a measurable density function, and �̂
<

#,� is positive definite.

Elliptical densities encompass a broad class of relevant distributions including the mul-

tivariate normal and C distributions. They also impose a symmetric loss function but allow

for a general correlation structure across variables and horizons while accommodating fat-

tails. From (2.5) it is also possible to construct a predictive likelihood following Clements

and Hendry (1998). Thus, assumptions made about the joint forecast-error density can also

be interpreted as choices about the joint loss function and vice versa. This allows for tests

of equal path forecast accuracy in terms of either general loss or joint density functions.

The next section formulates a general test of equal path forecast accuracy using the joint

forecast-error density as a general loss function.
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3 A Test of Equal Path Forecast Accuracy
In this section I show how to construct a path forecast accuracy test using the joint

forecast-error density as a general loss function. I start by describing the notation and the

environment. I then describe the test and the necessary assumptions. Finally, I interpret it

against other joint multi-horizon tests using a specific loss function.

Consider a stochastic process Z ≡ {zC : Ω→ RB, ( ∈ N. C = 1, 2, ...} defined on a complete

probability space (Ω, �, %). Partition the observed vector as zC ≡
(
yC , x

′
C

)′, where yC : Ω→ R 
is the vector of variables of interest and xC : Ω → R(− is a vector of predictors. Define

the information set at time C as FC = f
(
zC , zC−1, . . . , zC−<+1;�<,C

)
where � is the matrix of

population parameters for the zC process and suppose that methods are used to produce

a system of path forecasts for the stacked � vector of variables of interest, YC,� , using

the information in FC . Denote the path forecasts for two sets of methods 9 ∈ {1, 2} by

Ŷ<
C, 9
(�) ≡ ; 9

(
zC , zC−1, . . . , zC−<+1; �̂ 9 ,<,C

)
where ; 9 (·) represents a measurable function that is

allowed to vary across variables and horizons. Subscripts indicate that the time C forecasts

are measurable functions of the < most recent observations where < is finite.2

The ((C − < + 1) × � matrix �̂ 9 ,<,C collects the parameter estimates for the set of

methods in 9 . The only requirement for how the forecasts are produced is that they are

measurable functions estimated over the same finite estimation window. This allows them

to be generated using a range of methods which may differ for each variable and / or horizon

as long as they are estimated over the same window and only rely on information in FC .

Out-of-sample forecast evaluation is performed using a “rolling window” estimation scheme.

Let ) +� be the total sample size. The forecasts are produced at time < using data indexed

1, . . . , < and the path forecast errors are generated as Ũ<
<,�, 9

= Y<,� − Ŷ<
<, 9
(�). The estima-

tion window is rolled forward one observation and the second set of forecasts are obtained us-

ing 2, . . . , <+1 where the path forecast errors are generated as Ũ<
<+1,�, 9 = Y<+1,�−Ŷ<

<+1, 9 (�).

This procedure is iterated, so that the last set of forecasts are obtained using ) −<, ..., ) and

the path forecast errors are generated as Ũ<
),�, 9

= Y),� − Ŷ<
), 9
(�) . This yields a sequence

of # = ) − < + 1 path forecast-error observations.
2Note that as in Giacomini and White (2006), < can vary across forecasting systems. In that case we can
redefine < as the maximum of the recent observations used across the two forecasting systems.
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This closely follows the setup for Giacomini and White (2006)’s unconditional predictive

ability test with two important differences.3 First, I focus on the vector of path forecasts

across multiple horizons and variables. Second, I use the log joint forecast-error density as a

general loss function, which is similar to the log score; see Gneiting and Raftery (2007). This

aligns my approach with the forecast density evaluation literature; see Berkowitz (2001),

Mitchell and Hall (2005), Bao et al. (2007) and Amisano and Giacomini (2007). A key

difference is that the joint density is chosen by the forecast evaluator. This choice is based

on an acceptable loss profile and not necessarily related to the underlying data or forecast

generating process. Once the forecast errors are filtered through the joint loss, it is possible

to use the methods proposed by Giacomini and Rossi (2010) and Hansen et al. (2011).

For two alternative sets of path forecasting methods let

!'<,C,�, 5 = ∇;=
{
5C,*�

(
Ũ<
C,�

)}
= ;=

{
5C,*�,1

(
Ũ<
C,�,1

)}
− ;=

{
5C,*�,2

(
Ũ<
C,�,2

)}
. (3.1)

I allow for different weights at each horizon using the fact that the joint density is the product

of the conditional and marginal densities. The unique temporal ordering means that the log

joint density for each set of methods 9 can be decomposed as

;=

{
5C,*�, 9

(
Ũ<
C,�, 9

)}
=

�∑
ℎ=1

;=

{
5C,Dℎ, 9 |*ℎ−1, 9

(
ũ<C, 9 (ℎ) | ũ<C, 9 (0), . . . , ũ<C, 9 (ℎ − 1)

)}
, (3.2)

where ũ<
C, 9
(0) = 0 and the forecast error density at each horizon is conditional on all previous

horizons. Allowing for fixed weights at each horizon, (3.1) becomes

,!'<,C,�, 5 =

�∑
ℎ=1

Fℎ∇;=
{
5C,Dℎ |*ℎ−1

(
ũ<C (ℎ) | ũ<C (0), . . . , ũ<C (ℎ − 1)

)}
, (3.3)

where Fℎ is the weight assigned to each horizon. For example, this allows longer horizons to

receive less weight than shorter horizons while also accounting for the dependence between

them. Re-weighting the conditional and marginal error densities differs from Amisano and

Giacomini (2007) who re-weight the density forecast to focus on different aspects of the

distribution. Since the optimal choice of weights is generally unknown, the sensitivity to this

choice could be explored further using the procedures in Barendse and Patton (2019).
3The unconditional predictive ability test is similar to Diebold and Mariano (1995) and West (1996). How-
ever, as discussed in Clark and McCracken (2013), the former focuses on finite sample results while the
latter focus on the population, which has implications for the null hypothesis.
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A test for equal performance of the weighted path forecasts can be formulated as

�0 : E
[
,!'<,C,�, 5

]
= 0, C = 1, 2, .... against (3.4)

�� : E
[
,!'<,#,�, 5

]
≠ 0 for all # sufficiently large, (3.5)

where ,!'<,#,�, 5 = 1
#

∑)
C=<,!'<,C,�, 5 which implies that the alternative hypothesis does

not require stationarity. A test of the null is based on the following statistic

g<,#,�. 5 =

√
# ×,!'<,#,�, 5

f̂#, 5
, (3.6)

where f̂2
#, 5

is a heteroskedasticity and autocorrelation consistent (HAC) estimator of the

asymptotic variance f2
#
= V

[√
# ×,!'<,#,�, 5

]
; see Andrews (1991), Müller (2014) and

Lazarus et al. (2018) among others.

A level 0 test rejects the null hypothesis of equal performance of the path forecasts of

systems 1 and 2 whenever 01B
(
g<,#,�, 5

)
> I0/2, where I0/2 is the (1 − 0/2) quantile of a

standard normal distribution. The following theorem provides asymptotic justification:

Theorem 1. For a finite estimation window < < ∞, and 0 ≤ Fℎ < ∞, suppose
1. {zC} is a mixing sequence with q of size −A/(2A − 2), A ≥ 2, or U of size −A/(A − 2), A > 2;

2. E
[
;=

{
5C,*�, 9

(
Ũ<
C,�, 9

)}]2A
< ∞ for all C and 9 ∈ {1, 2};

3. f2
#
> 0 for all # sufficiently large.

Then (a) under �0 in (3.4), g<,#,�, 5
�−→ # (0, 1) as # → ∞ and (b) under �� in (3.5), for

some constant 2 ∈ R, %
[
01B

(
g<,#,�, 5

)
> 2

]
→ 1 as # →∞.

Assumption 2 requires the existence of at least four moments of the log forecast-error

densities, and must be verified on a case-by-case basis depending on the forecast errors

and loss function. For example, the normal density requires the existence of at least eight

moments. This effectively requires that the forecast errors do not behave too erratically

and limits the flexibility of Assumption 1, which allows the data to be non-stationary and

characterized by heterogeneity, dependence, and structural breaks.

Assumption 3 allows for the test to consider both nested and non-nested models in sample,

but implies that they are not nested in the population; see Giacomini and White (2006, p.

1546). If this assumption does not hold, then the true forecast-error densities are identical

and the test statistic will converge to a non-standard distribution; see Clark and McCracken
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(2013). Hansen and Timmermann (2015) show that for � =  = 1, this distribution is

related to the distribution of the difference between Wald test statistics from the forecast

sample (#) and the estimation sample (<). Thus, it is also related to the difference between

likelihood ratio test statistics from the respective samples, see Engle (1984), and so it may

be possible to test this assumption following Vuong (1989).

3.1 Comparing Other Approaches
Any number of densities can be used as a loss function. Choosing 5C (·) from the class of

elliptical densities as in (2.5) gives a symmetric loss function that is linked to the standard

MSE loss and to the GFESM. In particular, for the multivariate normal density, 5C (·) = iC (·),

with fixed weights so that Fℎ = F ∀ ℎ ∈ �, (3.6) is a test of differences in the log GFESM

g<,#,�,i = −
√
#

2f̂#,i
F∇;=

(����̂<

#,�

���) . (3.7)

Allowing for different weights across horizons gives

g<,#,�,i = −
√
#

2f̂�
#,i

�∑
ℎ=1

Fℎ∇;=
(����̂<#,ℎ| (0,...,ℎ−1) ���) , (3.8)

where ;=
����̂<#,ℎ| (0,...,ℎ−1) ��� is the log determinant of the conditional MSE matrix at each horizon,

see (2.2), which is orthogonalized by all prior horizons.4

Expanding (3.8) to facilitate comparisons with other multi-horizon approaches gives

g<,#,�.i = −
√
#

2f̂#,i


�∑
ℎ=1

Fℎ∇

;=
(����̂<#,ℎ���) − ;= ©­­«

����̂<#,ℎ�������̂<#,ℎ| (0,...,ℎ−1) ���
ª®®¬
 (3.9)

+ 1

#

)∑
C=<

∇
{
Ũ<′
C,�,

1
2
′

�, 

({
�̂
<

#,�

}
−1 − I� 

)
,

1
2
�, 

Ũ<
C,� + �

(
,�, 

)}
+

�∑
ℎ=1

Fℎ

 ∑
:=1

∇
{
1

#

)∑
C=<

D̃<C (ℎ, :)2
}]
,

where D̃<C (ℎ, :) is the :th element of ũ<C (ℎ) as defined in (2.1),,�, = 3806 ({F1, . . . , F�})⊗

I , and �
(
,�, 

)
captures interactions between the weights and covariance terms. �

(
,�, 

)
=

0 when Fℎ = F ∀ℎ ∈ � or when �̂
<

#,� = 3806

(
�̂
<

#,�

)
. The first two lines of (3.9) capture the

weighted differences in the forecast-error covariances and dynamics (i.e. weighted differences

4For example, the conditional MSE matrix at the second horizon is �̂2 |1 = �̂2−�̂2.1�̂
−1
1 �̂1.2, where �̂1.2 = �̂

′

2.1

is the co-movement between the forecast errors at the first and second horizons. Also note that �̂1 |0 = �̂1.
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in the Gaussian copulas). The third line captures the weighted differences in the marginal

densities across variables and horizons; i.e. the weighted MSEs.

This illustrates how the joint path test relates to existing tests. The unweighted trace test

statistic proposed by Capistrán (2006) or the weighted average superior predictive ability

(aSPA) test discussed in Quaedvlieg (2019) is captured in the last line of (3.9). The log

determinant metric, popularized by Doan et al. (1984), is captured in the first term of the

first line of (3.9). The joint test incorporates this information while also including additional

information which captures differences in the dependence and dynamics of the forecasts.

This is important, especially when differences in the forecast-error covariances can offset or

exacerbate the differences between variables and across horizons.

3.2 A Special Case: The Normal Distribution
Although the general path test has many advantages, it is limited by its reliance on the

HAC estimator of the asymptotic variance. While HAC estimators allow for considerable

flexibility, they exhibit poor performance in small samples when there is high persistence; see

Müller (2014). Quaedvlieg (2019) proposes a bootstrap estimator which allows for high per-

sistence but also requires large samples. I show that under specific distributional assumptions

about the forecast errors, it is possible to circumvent the use of HAC or bootstrap estimators.

This provides further insight into the properties of path tests.

Until now I have treated the joint density as a general loss function, which does not nec-

essarily impose a strict distributional assumption on the forecast errors. However, going one

step further and imposing that the forecast errors follow a multivariate normal distribution,

then the unweighted version of (3.6) is

g<,#,�,i =

√
# × !'<,#,�,i

f̃#
, (3.10)

where f̃2
#
= 4� × CA

[({
I� − 1

2

(
(�−1)2+1�>1

�2

)
�̂# ,� �̂# ,�

} (
1 − Ŵ2

#

)
+ 2�̂# ,� (1 − Ŵ# )

) (
I� + �̂# ,�

)−2]
is

a consistent estimator of the asymptotic variance, �̂#,� is a consistent estimator of the

squared stacked non-centrality, and Ŵ# < 1 is a consistent estimator of the correlation across

forecasting methods.5 Asymptotic justification for (3.10) comes from the following theorem:
5For simplicity this formulation assumes that the estimators of the non-centrality are identical across fore-
casting methods. This is relaxed in the simulations and the application.
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Theorem 2. For fixed  and �, large <, and for 9 ∈ {1, 2} suppose

1. Ũ<
C,�, 9
∼ #� 

[
�H,j,
�, 9

]
with 
�, 9 positive definite;

2. ũ<
C, 9
(ℎ) = ∑B

8=0� 9 ,ℎ,8v 9 ,C+ℎ−8 + >? (1) for B ≤ ℎ − 1.

Then (a) under �0 in (3.4), g<,#,�,i
�−→ # (0, 1) as # →∞ and (b) under �� : E

[
!'<,C,�,i

]
≠

0 C = 1, 2, ...., for some constant 2 ∈ R, %
[
01B

(
g<,#,�,i

)
> 2

]
→ 1 as # →∞.

Assumption 1 requires that the forecast errors are jointly gaussian. This is a strong as-

sumption given that forecast errors often suffer from large outliers and heavy tails. However,

it is possible to reformulate potential heteroskedasticity, outliers, and fat tails as abrupt

changes in the time-varying bias; see Hendry and Martinez (2017). Therefore, the validity

of this assumption depends on how the non-centrality is treated.

Assumption 2 requires that the stacked forecast errors each follow a "�(ℎ − 1) process.

Diebold and Mariano (1995) find that "�(ℎ − 1) dependence works well in practice and it

has since become a standard assumption; see Giacomini and White (2006, footnote 5) and

Clark and McCracken (2013). It is possible to allow for higher order dependence but requires

that the initial forecast horizon is treated separately from the rest of the path.6

Assumption 2 also requires that any estimation error collapses. This aligns more closely

with Diebold and Mariano (1995) rather than Giacomini and White (2006) by focusing on

the population results. As a result, nested models are dealt with differently in that the

underlying shock processes are assumed to be correlated, which is why it is necessary to

estimate the correlation across forecasting methods.

While the asymptotic variance is largely driven by the non-centrality, if the forecast

errors are unbiased and uncorrelated across models, then the asymptotic variance of (3.10)

simplifies to f̃ = 2�
√
 . This relates to Anderson (2003, Theorem 7.5.4) and Clements and

Hendry (1993, equation 38) and effectively shows that in the unbiased case, the test statistic

under the null is an average of the differences in the conditional mean square forecast errors

across horizons. Note also that f̃ is not an estimate and could serve as a null hypothesis for

testing the HAC estimate of the long-run variance.

6For example, the entire path can be decomposed as ;=
����̂# ,�

��� = ∑�
ℎ=2 ;=

����̂#+ℎ |1...ℎ−1��� + ;= ����̂#+1��� where
�̂#+ℎ |1...ℎ−1 is the estimated MSE matrix at horizon ℎ conditional on all previous horizons.

11



4 Simulations
Monte Carlo experiments are used to compare the properties of the path forecast accuracy

tests with existing joint tests. I start by describing the path forecast-error generating process.

I then describe alternative tests and present the results. All numerical results were obtained

using OxMetrics Version 7.2; see Doornik (2013).

4.1 The Path Forecast-Error Generating Process
I generate the path forecast errors as follows:

ŨC,�,{1,E,2: ,2ℎ} ≡ )1 + 	Π,�'
1/2′
E,2: ,2ℎVC,� , (4.1)

where VC,� is an asymmetric Hankel matrix where each unique element is vC,ℎ
iid∼ # (-, I )

which is correlated across forecast models by W. I set - = 0 and W = 0.1. The forecast errors

follow a "�(ℎ−1) process and exhibit dependence and biases across variables and horizons.

They have a model-specific bias through )1, are serially correlated through 	� , and have

model-specific variances and correlations across horizons and variables through ' E,2: ,2ℎ . Note

that this simulation set-up is similar to Quaedvlieg (2019) with the addition that the forecast

errors follow a "� (ℎ − 1) process and the specification of a richer correlation structure that

allows me to explore the impact of changes in cross-horizon forecast-error dynamics.

Since forecast errors typically converge to the unconditional mean when the horizon is

large, then the correlations should get larger for adjacent horizons when ℎ is large, and

smaller for shorter horizons. I use the correlation matrix �, with elements d6,ℎ,;,:,2: ,2ℎ :

d6,ℎ,;,:,2: ,2ℎ =



1 if 6 = ℎ, ; = :

exp (−1.2 + 0.025<0G (6, ℎ) − 0.12501B (ℎ − 6)) + 2ℎ if 6 ≠ ℎ, ; = :

exp (−1.8) + 2: if 6 = ℎ, ; ≠ :

exp
(
−1 −

√
01B((: − ;) (ℎ − 6))

)
+ 2:+2ℎ

2 if 6 ≠ ℎ, ; ≠ :

(4.2)

where 2: governs the differences in how errors are correlated across variables while 2ℎ governs

differences in how errors are correlated across horizons. Higher values for either increases the

overall correlation. This plays a prominent role in the simulations. 2: and 2ℎ are set equal

to zero while under the alternative they vary across models. I allow the variance to change

across horizons so that fE,ℎ,: = E
(
1 +

√
ℎ−1
2

)
where E = 1. The variance and correlation are
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combined so that ' E,2: ,2ℎ = 3806 (2E) �2: ,2ℎ3806 (2E).

Now define the model-specific bias at each horizon as

\1,ℎ = 1

(
1 +
√
ℎ − 1

)
, (4.3)

where the bias increases with the horizon but is similar across variables. 1 governs the degree

of bias across models where in the baseline case 1 = 1. )1 shifts all horizons or variables up

or down by a fixed spread, while changes in - increase the spread across horizons.

Finally, define the serial correlation as a matrix of � elements where

	Π,� =

©­­­­­­­«

I 0 · · · 0

�
. . .

. . .
...

...
. . .

. . . 0

��−1 · · · � I 

ª®®®®®®®¬
, (4.4)

so that serial correlation accumulates across horizons as a "�(ℎ − 1) process. I define the

c 9 ,: elements for each  ×  matrix � as:

c 9 ,: =


0.4 + <8=

(
:
10 , 0.5

)
9 = :

0.2 9 ≠ :

. (4.5)

Note that 	Π,� does not matter when )1 = - = 0 since
��	Π,�

�� = 1. Figure 4.1 visualizes

the choice of the DGP by plotting the forecast errors across 100 observations. The pattern

of the forecast errors across horizons is similar to the U.S. Congressional Budget Office’s

path forecast errors for the gross federal debt; see Martinez (2015). Note that alternative

parameterizations do not substantively change the overall results.

I compare the performance of four test statistics: (1) the average univariate test (i.e.

aSPA), (2) the average multivariate test (i.e. aMSPA), (3) the equally weighted path test

from (3.7), and (4) the normal path test from (3.10). The first represents the approach in

Capistrán (2006) which does not explicitly capture differences in covariances or dynamics.

The second is an average of the log determinant measure from Doan et al. (1984) across

horizons which captures the covariances but not the dynamics.

The standard errors for the first three test statistics are computed using the HAC esti-

mator from Andrews (1991). Harvey et al. (1997)’s small sample correction is applied to all

test statistics. The block bootstrap procedure from Quaedvlieg (2019) can also be used.
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Notes: The figure plots the simulated forecast errors across multiple horizons and variables for a single simulation. The
simulations are based on the parameter choices as described above where 1 = 1, E = 1, - = 0 and 2: = 2ℎ = 0.

Figure 4.1: Illustration of Forecast-Error Data Generating Process

4.2 Null Rejection Frequency
I first evaluate the tests under the null hypothesis where the forecast accuracy from the

two forecast methods is essentially the same. Since tests are conducted based on a nominal

size of 5%, then the expected null rejection frequency for each test statistic is 5%.

Table 4.1: Null Rejection Frequencies for Tests of Equal Path Forecast Accuracy
aSPA (HAC) aMSPA (HAC) General Path (HAC) Normal Path

N↓ ‖ H→ 2 4 12 24 2 4 12 24 2 4 12 24 2 4 12 24

32 1.92 0.13 0.02 0.02 2.81 0.87 0.29 0.13 2.81 0.53 0.08 0.25 5.48 5.27 4.87 4.71
64 3.41 1.12 0.08 0.02 4.30 2.83 0.62 0.26 4.51 2.46 0.17 0.14 5.22 5.05 5.12 4.96
128 4.29 3.05 0.18 0.01 4.72 4.60 1.89 0.40 4.91 4.21 0.59 0.13 4.99 4.90 4.86 5.03
256 4.90 4.17 1.55 0.73 5.24 4.90 4.28 2.08 5.14 4.60 2.81 1.41 5.32 4.75 5.00 5.08
512 5.12 4.58 3.38 1.89 5.35 5.05 4.79 3.60 5.36 5.24 4.17 2.98 5.14 5.23 5.03 5.23
1000 5.26 4.85 4.13 2.82 5.33 5.10 5.01 4.42 5.13 4.82 4.73 4.29 4.94 4.62 4.90 5.00

Notes: The nominal size is 5%, K=1, 20,000 Replications.

Table 4.1 illustrates how the empirical rejection frequencies for each test statistic change

with the number of forecast-error observations and the length of the forecast horizon. The

test statistics which utilize the HAC estimator all start off undersized, especially for longer

path forecasts. At longer forecast paths they remain undersized even as the number of

forecast-error observations increases to 1000. Simulations also indicate that the block boot-

strap procedure by Quaedvlieg (2019) does not produce a substantive improvement in this

case; see Table A.1. The normal path test, which does not rely on a HAC or bootstrap

estimator, remains close to the nominal size across all forecast error observations and for all

lengths of the forecast path even as � → #. This illustrates the large gains from not relying

on the HAC estimator when there is a large amount of persistence.
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Table 4.2: Null Rejection Frequencies Across Horizons and Variables
aSPA (HAC) aMSPA (HAC) General Path (HAC) Normal Path

N↓ ‖ H=K→ 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

32 3.50 1.81 1.19 1.12 4.59 3.26 2.62 2.53 4.59 3.33 2.56 2.96 6.27 5.61 4.30 4.27
64 4.13 3.67 2.87 2.75 4.72 4.91 4.91 5.23 4.72 5.06 4.79 5.01 5.41 5.25 4.63 4.43
128 4.50 4.35 3.73 3.95 4.76 4.96 5.00 5.80 4.76 4.89 5.36 5.70 5.04 4.85 4.41 4.43
256 4.88 4.86 4.61 4.72 4.99 5.44 4.89 5.43 4.99 5.32 5.19 5.76 5.03 4.93 4.25 4.54
512 4.97 5.02 4.78 4.89 5.05 5.25 5.12 5.17 5.05 5.12 5.18 5.46 5.09 4.87 4.64 4.48
1000 5.08 4.99 5.23 5.15 5.13 5.06 5.26 5.16 5.13 5.06 5.10 5.30 5.09 4.87 4.58 4.59

Notes: The nominal size is 5%, 20,000 Replications.

Table 4.2 shows that the short-comings of the HAC estimator are lessened when both the

number of variables and the forecast horizons increase. However, the normal path test still

outperforms when  increases with �, with the null rejection frequency remaining close to

the nominal size. Note that when � = 1 the aMSPA and the general path tests are identical

since they both use the multivariate normal density as a loss function.

4.3 Non-Null Rejection Frequency
Next I evaluate the tests when the null hypothesis of equal path forecast accuracy does

not hold. Although the literature typically only considers differences in forecast bias, I

examine differences in bias, variance, and correlation across variables and horizons. This

provides a holistic picture of how the tests perform for a set of different hypotheses. I focus

on the case where  = 2, � = 4 and # = 200 and adjust the nominal size of all of the tests

under the null so that the empirical size is 5% to facilitate comparisons.

Figure 4.2 illustrates the results. Panels A and B indicate that the path forecast tests

are less able to distinguish differences in forecast bias when compared against other joint

accuracy tests. This is due to the fact that the bias persists across multiple horizons. This

persistence implies an increase in the forecast-error covariance, which offsets increases in

forecast biases at individual horizons. Thus, path forecast accuracy tests require that biases

are idiosyncratic across horizons or are very large in order to detect differences.

Path forecast accuracy tests are better at detecting most other forecast-error differences;

see panels C, D, E and F of Figure 4.2. Panel C shows that path tests are better at detecting

differences in the forecast-error variances. However, the real strength of the path tests stems

from their ability to detect differences in dynamics (panel E) across forecast horizons. In

each of these cases, the normal path test has the highest rejection frequency followed by the

general path test. This illustrates that one of the main advantages to using a joint multi-
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Notes: The figure plots the rejection frequencies when the null is false for different statistics across different degrees of model
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Figure 4.2: Rejection Frequencies for Different Alternatives

horizon loss function is its ability to capture differences in forecast-error covariances (i.e.

dynamics) across horizons. This is especially important for understanding whether forecast

errors propagate across horizons differently in alternative models.

5 Evaluating Macroeconomic Path Forecasts
I now use the path tests to compare the accuracy of the Federal Reserve Board’s Green-

book path forecasts against other path forecasts of GDP growth, inflation, and interest rates.

While it is natural to focus on the path of the level of GDP, analyzing the path of GDP

growth rates is identical to the levels when using the GFESM, since it is invariant to this

transformation. The data and forecasts used in this analysis are real GDP growth (hereafter

referred to as GDP), the GDP deflator (hereafter referred to as inflation) and the federal

funds rate (hereafter referred to as interest rate) spanning the so-called Great Moderation

period from 1985Q4-2000Q4. The ‘actual’ values are those published in the Federal Reserve

Board’s Greenbook two quarters after the quarter to which the data refer. This follows the

common practice of using the third (final) data estimates.
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Figure 5.1: ‘Path’ Forecasts and Actuals, 1984-2002
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I compare the Greenbook (GB) forecasts against four DSGE models, a Vector Equilibrium

Correction Model (VEqCM), and the Survey of Professional Forecasters (SPF). The DSGE

model forecasts were generated by Wolters (2015) using the real-time dataset from Faust and

Wright (2009).7 They were chosen because of their academic and policy relevance as well

as their wide-spread use before the Great Recession and include Del Negro and Schorfheide

(2004, "DS"), Edge et al. (2008, "EDO"), Fuhrer (1997, "FM"), and Smets and Wouters

(2007, "SW"). I generate the VEqCM model forecasts following Anderson et al. (2002) using

the real-time datasets from Croushore and Stark (2001) and Faust and Wright (2009). I also

include the median SPF forecast. While the SPF doesn’t produce a forecast of the federal

funds rate, I adjust the 3 month Treasury bill rate path forecast using the real-time gap

between the T-bill rate and the federal funds rate when the forecast was generated.

Figure 5.1 plots the actual values and the paths of the forecasts made in each quarter

for all models and variables. The columns are spanned by different variables, while the rows

are spanned by different models. Looking at the forecasts for GDP, the DSGE models and

the SPF do not capture the dynamics but adhere closely to the long-run mean of the series.

This is particularly true for forecasts from the DS model. The Greenbook path forecasts and

the VEqCM do attempt to capture some of the dynamics away from the mean, however the

VEqCM produces erratic forecasts early on in the sample.

The DSGE models have monotonic path forecasts of inflation. The DS model’s inflation

forecasts are constant across horizons, while the FM model’s forecasts trend upwards towards

a much higher equilibrium, which is likely influenced by the high inflation period prior to

the start of the forecast sample. The EDO and SW inflation forecasts are more reactive to

the business cycle despite having periods of both substantial over and under prediction.

Forecasts of the interest rate are similar across models. The Greenbook ‘forecasts’ of

the interest rate over this period represent the interest rate path, typically no change, upon

which the Greenbook forecasts are conditioned. The DS model’s forecasts adhere closely to

the mean, while the EDO and FM forecasts over predict the interest rate which is consistent

with the fact that they also over-predict inflation. The SW model’s forecasts capture some

of the dynamics despite under-predicting the interest rate for long periods.
7Special thanks to Maik Wolters for sharing his data and forecasts.

18



Although the forecasts extend out through eight-quarters-ahead, I only evaluate them up

through four-quarters-ahead due to data limitations. I include the nowcasts despite the fact

that there is a potentially large information advantage for the Greenbook and SPF. This is

because the model forecasts only use data from the previous quarter and are not augmented

by higher frequency data. Despite this, the results are robust to excluding the nowcasts or

to adjusting the forecasts to account for the Greenbook nowcast.

It is useful to examine the stacked forecast-error second moment matrices to get a pre-

liminary view on whether there is value to evaluating the path jointly. These are depicted

in Figure A.1 for all of the forecast methods. It shows the rich covariance structure in

the forecast-errors and indicates that there are vast differences in this structure across the

methods, especially for the EDO and the VEqCM models.

I take the Greenbook as the baseline against which I compare the other path forecasts. I

measure the accuracy of the path forecasts using the GFESM and test for differences using

the general and the normal path tests. For the normal path test I allow for time-varying

bias following Hendry and Martinez (2017), which captures any deviations from normality.

Table 5.1 presents the results. Both tests present fairly consistent results. However, the

normal path test tends to reject the null hypothesis of equal path accuracy with a higher

level of confidence than the general path test. For example, for GDP, the general path test

rejects the null hypothesis that the DS model and the Greenbook have equal path forecast

accuracy with a p-value of 4.5 percent, whereas the normal path test rejects the hypothesis

with a p-value of 0 percent. This is consistent with the simulation results where the normal

path test has uniformly higher rejection frequencies than the general path test.

The tests disagree when considering all three variables jointly as a system. For example,

the general path test rejects the null hypothesis of equal path forecast accuracy for the DS

model and the Greenbook with a p-value of 4.3 percent whereas the normal path test fails

to reject the null hypothesis with a p-value of over 25 percent. Overall, the tests and metrics

indicate that the DS model performs best, however that is due to its performance for GDP,

which dominates the other variables in the system due to its larger variation. While the

Greenbook path forecasts do not perform best in any case, their accuracy is not statistically

distinguishable from the best forecast method (SPF) for inflation and interest rates.
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Table 5.1: Testing for Equal Macroeconomic Path Accuracy

GB DS EDO FM SW SPF VEqCM

GDP
GFESM (in percentage points): 0.95 0.36 0.66 0.67 0.98 0.76 1.93
General path test 1.70** 2.30** 2.28** 0.34 1.91** 1.83**

[0.045] [0.011] [0.011] [0.369] [0.028] [0.033]
Normal path test (time-varying bias) 10.83*** 3.85*** 3.51*** 0.34 2.66*** 7.79***

[0.000] [0.000] [0.000] [0.368] [0.004] [0.000]
Inflation
GFESM (in percentage points): 0.48 0.63 0.73 0.56 0.66 0.46 0.96
General path test 1.56* 2.06** 1.55* 1.73** 0.91 2.14**

[0.060] [0.019] [0.061] [0.042] [0.182] [0.016]

Normal path test (time-varying bias) 3.15*** 4.99*** 1.78** 4.06*** 0.53 9.07***
[0.000] [0.000] [0.037] [0.000] [0.297] [0.000]

Interest Rates
GFESM (in percentage points): 0.36 0.46 0.59 0.49 0.56 0.36 0.95
General path test 1.34* 1.81** 1.47* 2.22** 0.10 2.02**

[0.090] [0.035] [0.071] [0.013] [0.461] [0.022]
Normal path test (time-varying bias) 3.06*** 6.93*** 3.98*** 5.95*** 0.18 13.80***

[0.001] [0.000] [0.000] [0.000] [0.429] [0.000]
3-Variable System
GFESM (in percentage points): 0.50 0.34 0.49 0.46 0.56 0.45 0.97
General path test 1.72** 0.41 1.08 1.31* 2.52*** 1.66**

[0.043] [0.340] [0.141] [0.094] [0.006] [0.048]
Normal path test (time-varying bias) 0.62 0.13 0.55 2.38*** 0.35 9.46***

[0.268] [0.449] [0.289] [0.009] [0.363] [0.000]

Notes: Tests include all forecast horizons through 4-quarters-ahead. Bold values indicate the best path forecast. The p-value
associated with the tail probability of the null hypothesis is in brackets: *p< 0.1 **p< 0.05 ***p< 0.01.

Next I decompose the path tests to better understand what aspect of the path forecasts

is driving the differences in the forecasts. This is done using the decomposition of the

(unweighted) general test in (3.9) in order to obtain the relative contribution of each horizon

as well as the joint dynamics across all horizons.

Figure 5.2 presents this decomposition. It indicates that the forecast dynamics (or com-

mon error components across horizons) play an important role across all models and vari-

ables. Differences in forecast dynamics can exacerbate differences between the models (e.g.

inflation), ameliorate, or even flip the differences (e.g. GDP or interest rates). For exam-

ple, the FM model performs worst across all horizons in terms of the GDP point forecasts.

However, when accounting for differences in forecast dynamics, FM’s path forecast is sig-

nificantly more accurate than the Greenbook path forecast. The figure also shows that the

information disadvantages in the nowcasts are primarily evident in the GDP forecasts and

most significant for the FM, SW, and VEqCM models.
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Figure 5.2: Decomposition of Differences in Path Accuracy (Relative to GB)

6 Path Forecast Accuracy for Hurricane Irma
Now I test for differences in forecasts of the path of Hurricane Irma in 2017 using al-

ternative weighting schemes. Irma formed from a tropical wave near Cape Verde in late

August, crossed the Atlantic in early September, and caused an estimated 65 billion dollars

in damages in the Caribbean and along the gulf coast of Florida.
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Official NWS Forecast US Model Forecast

Canadian Model Forecast UK Model Forecast

European Model Forecast Consensus Forecast

Notes: The Official NWS forecast (OFCL) comes from the National Hurricane Center. The US model (AEMN) comes from
NOAA’s Global Forecasting System. The Canadian model (CMC) is from the Canadian Meteorological Center’s global model.
The UK Model (EGRR) is from the UK Met’s global model. The Consensus model (TVCN) a simple average of the US,
Canadian, UK, and European models where available. The European model (EMXI) is the ECMWF model forecast. It was
derived from the other forecasts. All plots are restricted to a maximum forecast horizon of 7-days-ahead.

Figure 6.1: Alternative Path forecasts for Hurricane Irma

Although there were over 100 different forecast methods for Hurricane Irma, I focus on

six prominent methods: (1) the ‘Official’ National Weather Service forecast, (2) the ‘US

model’; (3) the ‘Canadian model’; (4) the ‘UK model’; the (5) ‘European model’; and (6)

the ‘Consensus’ which is a simple combination of the model forecasts. The Official forecast

is a subjective / judgmental forecast while the European model is widely considered to be

the most accurate model-based forecast. Each forecast was updated every six hours with

horizons ranging from 6-hours-ahead to over 7-days-ahead. Figure 6.1 plots the forecasts

from each method over time and space in order to provide insight into the differences across

the methods. Many of the forecasts including the Official, US, Canadian, UK and Consensus

have a clear north-easterly bias at the longest horizons.
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I compute the forecast errors using methods for calculating distance on the surface of a

spheroid by Vincenty (1975). There are 37 forecast-error observations for each method across

seven forecast horizons (12, 24, 36, 48, 72, 96 and 120-hours-ahead) with which to measure

and test for differences in forecast accuracy. I compute the unconditional, conditional and

joint measures of forecast accuracy across horizons. Figure A.2 illustrates that relative model

performance depends on which metric is considered.

I test for differences across models relative to the Official forecast and check how sensitive

these differences are to alternative path weights based on the National Hurricane Center’s

measure of ex-ante forecast uncertainty; i.e. the ‘cone of uncertainty’. To discount horizons

with more uncertainty, I set weights based on the inverse of the radius of the cone. Alterna-

tively, to focus on horizons with more uncertainty, I set weights based on the length of the

radius. For the exact weights see columns 4 and 5 respectively in Table A.2.

Table 6.1: Testing for Irma’s Path Accuracy

OFCL US CAN UK EU Con

Equally-weighted GFESM (in miles): 18.4 20.3 22.7 21.6 24.4 18.5
General path test statistic 1.92** 2.27** 1.63* 2.54*** 0.11

[0.027] [0.012] [0.051] [0.006] [0.457]

Short-weighted GFESM (in miles): 16.8 19.9 20.8 19.4 22.5 17.0
General path test statistic 2.61*** 2.59*** 1.39* 2.59*** 0.23

[0.005] [0.005] [0.082] [0.005] [0.409]

Long-weighted GFESM (in miles): 21.7 22.6 26.5 25.8 27.3 21.9
General path test statistic 0.77 1.70** 1.44* 2.43*** 0.20

[0.220] [0.045] [0.075] [0.008] [0.422]

Notes: See notes for Figure 6.1. Tests include all forecast horizons through 120-hours-ahead. The p-value
associated with the tail probability of the null hypothesis is in brackets: *p< 0.1 **p< 0.05 ***p< 0.01.

Table 6.1 presents the results. The equally weighted tests indicates that all of the fore-

casts, except for the consensus model, perform significantly worse than the official forecast.

The differences are larger and more significant when focusing on shorter horizons and are

smaller and less significant when focusing on longer horizons. In fact, he European model

outperforms the official forecast if all of the weight goes to the longest horizon (not shown);

which is coincides with the conditional RMSE rankings in Figure A.2.
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7 Conclusions
The standard focus on point forecasts ignores forecast dynamics which are crucial to

understanding the accuracy of the forecast path. I show that the GFESM can be thought

of as a path forecast accuracy metric and is equivalent to choosing a joint multivariate

normal density as a loss function. I propose a general test for differences in path forecast

accuracy using the link with the joint density. I illustrate that for a multivariate normal

loss function, the test is closely linked to existing joint multi-horizon tests, except that it

explicitly captures differences in error covariances and dynamics, which other tests do not. I

also consider a special case of this test which does not require the use of a heteroskedasticity

and autocorrelation consistent estimator of the variance.

Monte Carlo simulations illustrate the benefits and trade-offs associated with using joint

tests. There are large gains from avoiding the HAC estimator, particularly for long forecast

paths. Although path forecast accuracy tests are less able to detect differences in biases,

since they are highly correlated across horizons, they are more likely to capture differences

in variances, covariances and dynamics across forecast models. This is particularly true for

differences in forecast-error dynamics, which other tests cannot capture.

I apply the path tests in two relevant policy settings. I start by comparing the Federal

Reserve Board’s Greenbook path forecasts with several model forecasts. Decomposing the

differences along the path, I find that forecast dynamics play an important role and that

there are common differences across models. In the second application, I evaluate the path

forecast accuracy of models for Hurricane Irma in 2017. While the official forecast tends

to dominate, the tests show that other models can match its accuracy depending on how

weights are assigned along the path.

Overall, the difference in path forecast accuracy provides a new and unique perspective.

This is because, unlike point forecasts, the path includes dependencies across horizons. The

applications show that these dynamics can play an important role in determining whether

there are persistent differences across horizons. These findings are reinforced by the simula-

tion exercise and demonstrate the value of using path forecast accuracy tests to assess the

accuracy of multi-horizon forecasting systems.
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Mathematical Appendix

Proof of Theorem 1
From assumption 2, note that

E
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where the equality follows from the indpendence of conditional densities. The proof then

follows from Amisano and Giacomini (2007) who show that assumptions 1-3 satisfy Theorem

4 of Giacomini and White (2006) when WC ≡ zC and Δ!<,C ≡ ,!'<,C,� .

Proof of Theorem 2
I first consider the central case by extending Cai et al. (2015)’s central limit theorem for

log determinants to stacked "�(ℎ − 1) processes using the following Lemmas:
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# Î#, �

)}
is the same as � times the sum of

29



 -independent log j2 distributions such that

;=

{
34C

(
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where j2
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I − Î−1),#, ,ℎ

[
C
′

ℎ,#, Î
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where Îℎ−1,#, is invertible as long as  (ℎ − 1) ≤ #. The intuition behind this decomposition

follows from the properties of determinants of block matrices; see Silvester (2000).
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which follows from the Bartlett decomposition where each variable is independent as # →

∞; see Anderson (2003). Combining each of these results using the Continuous Mapping

Theorem for fixed � and  as # →∞ proves the Lemma.
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�) where 
� has dimension  �× �
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Proof of Theorem 2a. It follows from Lemma 1 and Lemma 2 that
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Î#, �

)}
−

 ∑
:=1

�

[
Ψ

(
# − : + 1

2

)
− ;=

(
#

2

)]
= ;=

{
34C

(
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Using the characteristic function of the log j2 distribution gives
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Then applying the formula for moments from the moment generating function of the j2
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distribution:
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Cai et al. (2015) show that when � = 1 this can be approximated as
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where Cai et al. (2015, Lemma 3) shows that A#, → 0 as # →∞ when  ≤ #. As a result,

when # →∞ then this gives the characteristic function of the standard normal distribution:

q> (C) → 4
(8C)2
2 .

Now I consider the non-central case with an additional Lemma:

Lemma 3. Let ^)+1, . . . , ^)+#
883∼ # (�,
) where 
 and � have dimension  × with

 ≤ #. Let the sample second-moment matrix �̂# have a non-central Wishart distribution

where #�̂# ∼ , (#,
,�) and � = 
−1/2
′
�′�
−1/2 is the squared non-centrality. Then
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the log determinant of the sample second-moment matrix satisfies
√
#

{
;=

{
34C

(
�̂#

)}
;= {34C (�)}

}
√
2 × CA

[
(I + 2�) (I +�)−2

] → # (0, 1) 0B # →∞.

Proof of Lemma 3. The proof follows from Fujikoshi (1968, Theorem 1) when applying

the delta-method from Casella and Berger (2002, Theorem 5.5.24) where the natural log is

a continuous function.

Theorem 2b. Let ^�,)+1, . . . , ^�,)+# ∼ #� (�� ,
�) where 
� has dimension  � ×

 � with  � ≤ # and ^�,)+= = {-)+=, . . . , -)+�+=−1}′ where each -C+=+ℎ−1 is of dimension  ×

1 and follows a MA(ℎ− 1) process. Let the sample second-moment matrix Φ̂#,� have a non-

central Wishart distribution where #Φ̂#,� ∼ , (#,
� ,��) and �� = 
−1/2
′

�
�′���


−1/2
�

is the squared non-centrality. Then ;=
{
34C

(
Φ̂#,�

)}
satisfies

√
#

{
;=

{
34C

(
Φ̂#,�

)}
− ;= {34C (Φ�)}

}
√
2� × CA

[(
I� + 2�� − 1

2

(
(�−1)2+1�>1

�2

)
�
′
���

)
(I� +��)−2

] → # (0, 1) 0B # →∞.

Proof of Theorem 2b. I prove the theorem for the case where � = 2 and then generalize the

result using Lemma 3. It follows from Lemma 1 that

;=

{
34C

(
Φ̂#,2

)}
− ;= {34C (Φ2)} = ;=

{
34C

(
Î#,2 + �̂#,2 + >? (1)

)}
− ;= {34C (I2 +�2)} ,

where assuming that the squared non-centrality is identical across horizons gives

Î#,2 + �̂#,2 =
©­«
f̂2
#,1 f̃#,1,2

f̃#,1,2 f̂2
#,1 + >? (1)

ª®¬ + ©­«
\̂2
#

\̂2
#

\̂2
#

\̂2
#

ª®¬
where f̂2

#,1 ∼ # (1, 2), \̂# ∼ # (\, 1), and f̃#,1,2 ∼ # (0, 1) so that

[̂ − [ =
©­­­­«

\̂#

f̂2
#,1

f̃#,1,2

ª®®®®¬
−

©­­­­«
\

1

0

ª®®®®¬
∼ #


©­­­­«
0

0

0

ª®®®®¬
,

©­­­­«
1 0 0

0 2 0

0 0 1

ª®®®®¬

.

The multivariate delta method, see Casella and Berger (2002, Theorem 5.5.28), implies that

√
# (ℎ ((̂) − ℎ (()) ∼ #


0,
mℎ (()
m(

′ ©­­­­«
1 0 0

0 2 0

0 0 1

ª®®®®¬
mℎ (()
m(


.
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Choosing the function as

ℎ (() = ;=
34C ©­«

f2
1 + \

2 f1,2 + \2
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2
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2
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(
f1,2 + \2

)2}
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1

)2
+ 2f2

1 \
2 −

(
f1,2

)2 − 2f1,2\2} ,
then the vector of partial derivatives is

mℎ (()
m(

=

{
4\

1 + 2\2
,
2
(
1 + \2

)
1 + 2\2

,
−2\2
1 + 2\2

} ′
,

which gives
√
#

(
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{
34C

(
Φ̂#,2

)}
− ;= {34C (Φ2)}

)
∼ #

[
0,

8
(
1 + 2\2 + 3

2\
4
)(
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)2 ]

.

This can be written more generally as

√
#

©­­«;=

34C

(
Φ̂#,2

)
34C (Φ2)
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[
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{(
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1

4
�
′

2�2

)
(I2 +�2)−2

}]
,

which generalizes for multiple � and  following Lemma 3 so that
√
#

(
;=

{
34C

(
Φ̂#,�

)}
− ;= {34C (Φ�)}

)
√
2� × CA

{(
I � + 2�� − 1

2

(
(�−1)2+1�>1

�2

)
�
′
���

)
(I � +��)−2

} → # [0, 1] .

The rest of the result follows directly from the multivariate delta method when considering

the forecast errors from both methods simultaneously and allowing them to be correlated.
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A Additional Tables and Figures

Table A.1: Null Rejection Frequencies for Tests of Equal Path Forecast Accuracy
aSPA (bootstrap) aMSPA (bootstrap) Path (bootstrap) Normal Path

N↓ ‖ H→ 2 4 12 24 2 4 12 24 2 4 12 24 2 4 12 24

32 1.86 0.88 0.87 1.54 2.42 1.48 1.34 2.15 2.44 1.04 0.90 2.23 5.48 5.27 4.87 4.71
64 3.14 1.27 0.42 0.62 3.85 2.66 0.97 1.06 3.79 2.12 0.61 0.66 5.22 5.05 5.12 4.96
128 4.02 2.71 0.49 0.40 4.65 3.94 2.08 0.94 4.73 3.71 0.88 0.88 4.99 4.90 4.86 5.03
256 4.85 3.93 1.52 0.99 5.17 4.65 3.86 2.26 4.90 4.71 2.82 1.68 5.32 4.75 5.00 5.08
512 4.89 4.65 3.23 2.00 5.01 5.10 4.86 3.69 5.25 4.73 4.05 3.04 5.14 5.23 5.03 5.23
1000 4.96 4.83 4.30 3.24 5.11 5.01 5.11 4.69 5.11 4.87 4.37 4.13 4.94 4.62 4.90 5.00

Notes: The nominal size is 5%, K=1, 20,000 Replications.Appendix
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Notes: rgdp = GDP, infl = inflation, intr = interest rate and where the numbers denote the forecast horizon from 0 to 4 quarters
ahead. The matrices are symmetric by construction where the mean square forecast errors for each variable and horizon fall
along the main diagonal of each matrix. See text for model definitions.

Figure .2: Forecast-Error Second-Moment Matrices by Forecast Method
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Notes: rgdp = GDP, infl = inflation, intr = interest rate and where the numbers denote the forecast horizon from 0 to 4

quarters ahead. The matrices are symmetric by construction where the mean square forecast errors for each variable and

horizon fall along the main diagonal of each matrix. See text for model definitions.

Figure A.1: Forecast-Error Second-Moment Matrices by Forecast Method
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Notes: All metrics are estimated using 37 observations. Values less than 1 indicate that the method is more accurate than the
‘Official’ NWS forecast while values greater than 1 indicate that the method is less accurate. The Conditional RMSE (CRMSE)
is computed as the RMSE for a given horizon conditional on the accuracy of all prior horizons.

Figure A.2: Relative Forecast Accuracy Rankings for Hurricane Irma

Table A.2: Alternative Weights for Hurricane Irma

Horizon Radius Equal Weight Short Weighted Long Weighted

12 29 1 2.282 0.293
24 45 1 1.471 0.455
36 63 1 1.050 0.637
48 78 1 0.848 0.789
72 107 1 0.618 1.082
96 159 1 0.416 1.608
120 211 1 0.314 2.134

Notes: Radius is in miles. Weights sum to the number of horizons. The radius comes from
the National Hurricane Center in 2017: https://web.archive.org/web/20170906033729/https:
//www.nhc.noaa.gov/aboutcone.shtml
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