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Abstract

We consider Partial Least Squares (PLS) estimation of a time-series forecasting model

with the data containing a large number (T ) of time series observations on each of a

large number (N) of predictor variables. In the model, a subset or a whole set of the

latent common factors in predictors are determinants of a single target variable to be

forecasted. The factors relevant for forecasting the target variable, which we refer to

as PLS factors, can be sequentially generated by a method called �Nonlinear Iterative

Partial Least Squares� (NIPLS) algorithm. Two main �ndings from our asymptotic

analysis are the following. First, the optimal number of the PLS factors for forecasting

could be much smaller than the number of the common factors in the original predictor

variables relevant for the target variable. Second, as more than the optimal number

of PLS factors is used, the out-of-sample forecasting power of the factors could rather

decrease while their in-sample explanatory power may increase. Our Monte Carlo

simulation results con�rm these asymptotic results. In addition, our simulation results

indicate that unless very large samples are used, the out-of-sample forecasting power

of the PLS factors is often higher when a smaller than the asymptotically optimal

number of factors are used. We �nd that the out-of-sample forecasting power of the

PLS factors often decreases as the second, third, and more factors are added, even if

the asymptotically optimal number of the factors is greater than one.
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1 Introduction

Regressions with a large number of predictor variables (N) could produce poor forecasting
results because of high multicollinearity among the predictors, especially when the number
of time series observations (T ) is not su�ciently larger than N . A treatment to this large-
dimensionality problem is the use of shrinkage estimation methods such as Ridge, Bayesian,
and Principal Component (PC) regressions. 1 Another possible choice is the Partial Least
Squares (PLS) regression that was originally introduced and developed by Wold (1966; 1973;
1982). 23 The PLS regression has been popularly used in chemometrics, bioinformatics,
machine learning and marketing research. Recently, use of the PLS regression has been
increasingly popular in the �elds of �nance and economics, especially for the analysis of the
data with both large N and large T ; see, for example, Groen and Kapetanios (2009; 2016),
Kelly and Pruitt (2013; 2015), Huang, Jiang, Tu, and Zhou (2015), Carrasco and Rossi
(2016), Light, Maslov, and Rytchkov (2017), Tu and Lee (2019), and Rytchkov and Zhong
(2021).

The PC and PLS regressions are similar in the sense that both use a small number
of estimated factors correlated with the true common latent factors in predictor variables,
as regressors. However, these regressions use di�erent approaches to extract factors from
predictor variables. Speci�cally, the PC regression estimates and uses for forecasting all the
common factors in predictor variables even if some of the factors are in fact uncorrelated
with the target variable. For this reason, the PC method is viewed as an �unsupervised�
method because the common factors are estimated independently from the target variable.
In contrast, the PLS regression generates relevant factors sequentially by the �Nonlinear
Iterative Partial Least Squares� (NIPLS) algorithm of Wold (1966). The PLS regression is
a �supervised� method in the sense that it isolates and estimates the relevant factors that
are correlated with a target variable from the latent factors that governs predictors; see
Mehmood, Liland, Snipen, and Sæbø (2012). For this reason, many previous studies have
conjectured that the PLS factors may have higher predictive power than the PC factors.
The purpose of this paper is to revisit this conjecture by investigating the asymptotic and
�nite sample properties of the PLS factors when they are obtained from the data with both
large N and large T .

The large-N and large-T properties of the PLS factors have been studied by Kelly and
Pruitt (2015) and Groen and Kapetanio (2016). Kelly and Pruitt (2015) consider the cases
in which individual predictor variables are correlated with a target variable only through the
common factors, and a subset or a whole set of these common factors in predictors are the
determinant of the target variable. Groen and Kapetanio (2016) examine the forecasting
power of PLS factors for the cases in which predictor variables are directly correlated with
the target variable, not indirectly through the latent factors. We do not consider the model
of Groen and Kapetanio (2016) in this paper. Our asymptotic analysis is conducted for a

1see De Mol, Giannone, and Reichlin (2008)
2The PLS regression is also a shrinkage estimation method; see, for example, De Jong (1993) and Phatak

and De Hoog (2002).
3The PLS regression is a shrinkage method in the sense that the norm of the OLS estimates of the

coe�cients of the PLS factors is not greater than that of the OLS estimates of the coe�cients of all predictors.
However, di�erently from the ridge and the Bayesian regressions, the PLS regression does not shrink all of
the regressor coe�cients. It could rather expand some coe�cients; see Butler and Denham (2000).
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model in which predictor variables are correlated with the target variable only through the
latent factors. However, our model is more general than that of Kelly and Pruitt (2015). For
the general model, we investigate the asymptotically optimal number of the PLS factors that
have the maximum predictive accuracy for the target variable. We also conduct Monte Carlo
simulations to examine the �nite-sample properties of the forecasting results by the PLS
regression. For our simulation exercises, we consider some cases in which the idiosyncratic
components of predictor variables, as well as the common latent factors, are correlated with
the target variable.

It is known that the PLS regression may use a smaller number of factors than the PC
regression to reach the maximum prediction power. For the cases where asymptotic theory
applies as T grows in�nitely with �xed N , Helland (1988; 1990) has shown that the number
of the distinct eigenvalues of the population variance-covariance matrix of the predictor
variables is the optimal number of the PLS factors to be used. In this paper we examine
how his result can be generalized to the cases in which asymptotic theory applies as both N
and T jointly grow in�nitely. Most of the previous studies related to large-N and large-T
properties of the PC or PLS factors have considered the cases in which predictor variables
contain K common latent factors and the �rst K largest eigenvalues of the sample variance-
covariance matrix of the predictor variables are asymptotically distinct (e.g., converges to
di�erent limits in probability); see Bai (2003), Stock and Watson (2002a), and Kelly and
Pruitt (2015). For such cases, each of the eigenvectors corresponding to the largest K
eigenvalues is asymptotically unique up to sign and scale. A novelty of our model is that it
allows some or all of the K largest eigenvalues to have the same probability limits. For this
general model, the eigenvectors corresponding to the eigenvalues having the same probability
limit are unique only up to orthonormal transformation. We �nd that this generalization is
important to understand the asymptotic and �nite-sample properties of the PLS factors.

There are two major �ndings from our asymptotic analysis. First, we �nd that the asymp-
totically optimal number of the PLS factors crucially depends on the asymptotic distribution
of the eigenvalues of the sample variance-covariance matrix of predictors. For example, if
all the K largest eigenvalues converge to the same probability limit, the �rst PLS factor
has the maximum prediction power that the PLS regression can have. In contrast, if the K
eigenvalues are all asymptotically distinct as in Kelly and Pruitt (2015), the asymptotically
optimal number of the PLS factors equals the number of the common factors in predictor
variables that are correlated with the target variable. Second, using overly many PLS fac-
tors could substantially decrease the out-of-sample forecasting power of the PLS regression
unless the N/T ratio is su�ciently small. While using more PLS factors can in�ate the PLS
regression's in-sample �t, it can deteriorate the regression's out-of-sample forecasting power.

The three major �ndings from our simulation experiments and topical empirical study
are the following. First, in �nite samples, the out-of-sample prediction power of the PLS
regression often sharply drops as more than the asymptotically optimal number of factors are
used. Second, unless the N/T ratio is su�ciently small, the out-of-sample prediction power
of the PLS regression is often peaked when a fewer number of factors are used than what
asymptotic theory suggests. The �rst PLS factor has dominantly strong forecasting power
than other PLS factors, even for the cases in which the asymptotically optimal number
of PLS factors is greater than one. The gain by using the second or other PLS factors
in addition to the �rst PLS factor is generally small. Third and �nally, cross-validation
methods are not always successful in �nding the number of factors that maximizes the out-
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of-sample forecasting power of the PLS regression. Our simulation experiments and actual
data analysis show that using only the �rst PLS factor often produces better forecasting
results.

This paper is organized as follows. Section 2 introduces the model we consider and
states the asymptotic properties of the PLS factors. Our Monte Carlo simulation results
are reported in Section 3, while some results from a topical empirical study are reported in
Section 4. Some concluding remarks follow in Section 5. Proofs of the theorems and lemmas
are all given in Appendix.

Throughout this paper, we use the following notation. For an a×a symmetric matrix A,

λh(A) denotes the hth largest eigenvalue of A; Λ(A | h′+1 : h′′) denotes the diagonal matrix

of λh′+1(A), ... , λh′′(A), where h′, , h′′ ≤ a. The notation ξh(A) stands for the a× 1 eigen-

vector of A corresponding to λh(A). We also use Ξ(A|h′ + 1 : h′′) =[ξh′+1(A), ..., ξh′′(A)].

For an a× b full-column rank matrix B, P(B) = B(B′B)−1B′ and Q(B) = Ia −P(B). For

an a×b matrix B (not necessarily a full-column rank matrix), the spectral and the Frobenius

norms of B are respectively denoted by ∥B∥2 = [λ1(B
′B)]1/2 and ∥B∥F = [trace(B′B)]1/2 =

[Σb
h=1λh(B

′B)]1/2. Finally, we denote �converges in probability� and �converges in distribu-

tion� by �→p� and �→d�, respectively.

2 Model and Asymptotic Properties of PLS factors

2.1 Model and Some Preliminary Results

This subsection introduces the model for which we investigate the large-N and large-T
asymptotic properties of PLS factors. The model we consider is a forecasting model in
which N predictor variables are available for forecasting a single target variable. The model
consists of two parts. The �rst one is a factor model in which N predictor variables are
generated by K latent factors, and the second part is a forecasting model for a single target
variable. Stated formally:

xit = f
′
•tϕ•t + eit = ΣJ

j=1f
′
(j)tϕ(j)i + eit; (1)

yt+1 = ΣJ
j=1f

′
(j)tβ(j) + ut+1 = f

′
•tβ + ut+1, (2)

where i (= 1, ... , N) indexes di�erent predictor variables, t (= 1, ... , T ) indexes time,
f (j)t is a k(j)× 1 random vector of latent factors, ϕ(j)i is a k(j)× 1 vector of factor loadings
corresponding to f (j)t, f •t = (f ′

(1)t, ...,f
′
(J)t)

′, ϕ·i = (ϕ′
(1)i, ...,ϕ

′
(J)i)

′, β(j) is k(j) × 1 vector

of regression coe�cients on f (j)t, β = (β′
(1), ...,β

′
(J))

′, the eit and ut+1 are random noises,

and K = ΣJ
j=1k(j). We later discuss how the factors in f •t are sorted into the D di�erent

groups, f (1)t, ... , f (D)t. Without loss of generality, we assume that E(f •t) = 0K×1 and
E(eit) = E(ut+1) = 0, for all i and t. For the cases in which f •t, xit and yt+1 have non-zero
means, we can replace them in (1) and (2) respectively by their demeaned versions, f •t− f̄ •,
xit − x̄i, and yt+1 − ȳ, where x̄i = T−1ΣT

t=1xit, f̄ • = T−1ΣT
t=1f •t, and ȳ = T−1ΣT

t=1yt+1.
Stacking the equations for individual predictors in (1) vertically, we have
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x•t = ΣJ
j=1Φ(j)f (j)t + e•t = Φf •t + e•t, (3)

where x•t = (x1t, ..., xNt)
′ and e•t = (e1t, ..., eNt)

′, Φ(j) = (ϕ(j)1, ...,ϕ(j)N)
′, and Φ =

(Φ(1), ...,Φ(J)). The equations in (3) and (2) can be rewritten by the following two ma-
trix equations:

X = ΣJ
j=1F (j)Φ

′
(j) +E = FΦ′ +E; (4)

y = ΣJ
j=1F (j)β(j) + u = Fβ + u, (5)

where X = (x•1, ...,x•T )
′, F (j) = (f (j)1, ...,f (j)T )

′, F = (F (1), ...,F (J)), E = (e•1, ..., e•T )
′,

y = (y2, ..., yT+1)
′, and u is similarly de�ned. For the model given in (4) and (5), our interest

lies in forecasting yT+2 using the data available up to time T +1. We can forecast yT+2 using
the PC or PLS factors. For heuristic discussions, we momentarily consider the model in (4)
and (5) under some preliminary assumptions that are unrealistically restrictive.

Preliminary Assumption (PA): (i) E = 0T×N . (ii) The variable groups, f ·t and ut+1,
are mutually independent. (iii) The factor vectors f •t are independently and identically dis-
tributed (iid) over time with Var(f (j)t) = σ2

jIk(j) where σ2
1 > σ2

2 > ... > σ2
J . (iv) The errors

ut+1 are iid with var(ut+1) = σ2
u. (v) Φ is a �xed matrix with Φ′Φ/N = IK .

Some remarks follow on PA. First, under (i), the predictors xit do not have idiosyncratic
components. This assumption is made to �nd more clearly what the PC and PLS factors
estimate. Second, the assumptions (iii) and (v) are by no means too restrictive assump-
tions. Suppose that the true factor vector f ∗

·t have an unrestrictive variance-covariance
matrix Σ∗ and the factor loading matrix Φ∗does not satisfy the assumption (v). Let
f •t = f

∗
•t(N

−1Φ′Φ)1/2Ξ∗ and Φ = Φ∗(N−1/2Φ′Φ)−1/2Ξ∗, where

Ξ∗ = Ξ((N−1Φ′Φ)1/2Σ∗(N−1Φ′Φ)1/2|1 : K).

Then, we can easily see that Φf •t = Φ∗f∗
•t and N−1/2Φ′Φ = IK . That is, unrestricted

factors and factor loadings can be reparameterized so that they can satisfy conditions (iii)
and (v). Third and �nally, for the factors having the same variances, it is not possible to
identify which factors among them are correlated with yt+1 and which factors are not. Such
factors are identi�ed only up to an orthogonal transformation.4

Under condition (v), the explanatory power of a factor in f •t for individual predictor
variables xit are on average proportional to the factor's variance. In the literature, it is
often assumed that the individual factors in f •t have distinctly di�erent average explanatory
power for response variables (predictor variables in our case); for example, see Stock and
Watson (2002a), Bai (2003), and Kelly and Pruitt (2015). A novelty of our analysis is that
we allow some factors to have the same explanatory power. This generalization is important
to understand the asymptotic and �nite-sample properties of PLS factors. The asymptotic
properties of the PC and PLS factors depend on two terms: $

SNT =
X ′X

NT
; bNT =

X ′y

N1/2T
. (6)

4This result is for the same reason that the eigenvectors corresponding to a repetitive eigenvalue of a
matrix are unique up to an orthogonal transformation.
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We scale down each term by NT and N1/2T , respectively, to facilitate our asymptotic analy-
sis. For the forecasting with the PC factors, we de�ne the following. For an integer q = 1, ...,

Â
PC

1:q =
(
α̂PC

1 , ..., α̂PC
q

)
= Ξ(SNT |1 : q);

P̂
PC

1:q =XÂ
PC

1:q ;

δ̂
PC

1:q =
(
P̂

PC

1:q
′P̂

PC

1:q

)−1

P̂
PC

1:q
′y;

ŷPC
T+2|q = x

′
•T+1Â

PC

1:q δ̂
PC

1:q .

Here, Â
PC

1:q is the N × q matrix of the PC factor loadings, P̂
PC

1:q is a T × q matrix of the

�rst q PC factors, δ̂
PC

1:K is the OLS estimator obtained by regressing y on F̂
PC

1:q , and ŷPC
T+2|q

denotes the forecast for yT+2 obtained by the �rst q PC factors. Under PA, if both f •T+1

and β were observable, the best forecast for yT+2 is y
∗
T+2 ≡ f ′

•T+1β = ΣJ
j=1f

′
(j)T+1β(j). By

Bai and Ng (2006), the forecast ŷPC
T+2:K that is obtained using the �rst K PC factors is a

consistent estimator of the best forecast y∗T+2.
Alternatively, the PLS regression can be used to consistently estimate y∗T+2. For the

forecasting with PLS factors, we de�ne the N × q matrix of the PLS factor loadings by

Ã
PLS

1:q =
(
α̃PLS

1 , ..., α̃PLS
q

)
= (bNT ,SNTbNT , ..., (SNT )

q−1bNT ),

which is of the form of a Krylov matrix. We also de�ne the following:

P̃
PLS

1:q =
(
p̃PLS
1 , ..., p̃PLS

q

)
=XÃ

PLS

1:q ;

δ̃
PLS

1:q =
(
P̃

PLS

1:q
′P̃

PLS

1:q

)−1

P̃
PLS

1:q
′y;

ỹPLS
T+2|q = x

′
•T+1Ã

PLS

1:q δ̃
PLS

1:q .

Here, P̃
PLS

1:q is the T×q matrix of the �rst q PLS factors, δ̃
PLS

1:q is the OLS estimator obtained

regressing y on P̃
PLS

1:q , and ỹPLS
T+2|q is the the forecast for yT+2 by using the �rst q PLS factors.

The factors in P̃
PLS

1:q are di�erent from the PLS factors that are sequentially generated
by the Nonlinear Iterative Partial Least Squares (NIPLS) algorithm. However, as Helland

(1988; 1990) has shown, the factor vectors in P̃
PLS

1:q span the same space as the factor vectors
generated by the NIPLS algorithm, and both factors produce the same forecasts. Thus, we

refer to the factors of form P̃
PLS

1:q as the PLS factors without distinguishing them from the
PLS factors generated by the NIPLS algorithm.

We investigate the asymptotic properties of PLS factors using P̃
PLS

1:q , because their asymp-
totic properties are much easier to analyze than those of the factors from the NIPLS algo-
rithm. However, we note that the PLS factors computed by the NIPLS algorithm are better
to use for actual data analysis. Krylov matrices are generally highly ill-conditioned matrices
and computation of them often generates numerical errors; see Dax (2017). Consequently,

the PLS factors computed by P̃
PLS

1:q are more likely to contain serious numerical errors. The
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PLS factors generated by the NIPLS algorithm are numerically more accurate. For this rea-
son, we use the NIPLS procedure for our simulation experiments and actual data analysis.
The NIPLS algorithm is described in Appendix A.

An important issue in using the PLS factors is how to �nd the optimal q (say, q∗PLS) for
forecasting yT+2. Helland (1990) �nds that q∗PLS could be smaller than the optimal number
of the PC factors for forecasting yT+2. For an intuition on his result, let us consider the

�population versions� of Â
PC

1:q , δ̂
PC

1:q , Â
PLS

1:q , and δ̃
PLS

1:q , which are computed replacing bNT

and SNT by E(bNT ) and E(SNT ), respectively. Let us denote them by APC
1:q , δ

PC
1:q , A

PLS
1:q ,

and δPLS
1:q , respectively. Under PA, we can easily �nd that

E (bNT ) =
1

N1/2
ΣJ

j=1σ
2
jΦ(j)β(j);E (SNT ) =

1

N
ΣJ

j=1σ
2
jΦ(j)Φ

′
(j).

With these, we can easily show

APC
1:K ≡ Ξ(E(SNT )|1 : K) = N−1/2Φ;

P PC
1:K ≡XAPC = N1/2F ;

δPC
1:K ≡

[
E(P PC

1:K
′P PC

1:K)
]−1

E
(
P PC

1:K
′y
)
= N−1/2[E(T−1F ′F )]−1E(T−1F ′y) = N−1/2β;

pPC
T+1:K ≡ APC ′x•T+1 = N1/2f •T+1.

By these results, the forecast for yT+2 obtained by using the population-versions of the �rst
K PC factors can be shown to equal the optimal forecast y∗T+2: yPC

T+2:K ≡ pPC
T+1|Kδ

PC
1:K =

f ′
•T+1β = y∗T+2. The optimal number of the PC factors for forecasting yT+2 is K (the total

number of the common factors in f ·t).
We now consider the population version of the PLS regression using the �rst J PLS

factors. Let

G∗
0 ≡ (F (1)β(1), ...,F (J)β(J)); D̄

∗
0 =


σ2
1 σ4

1 ... σ2J
1

σ2
2 σ4

2 ... σ2J
2

: : :
σ2
J σ4

J ... σ2J
J

 .

Observe that D̄∗
0 is a square Vandermonde matrix which is invertible because all of the σ2

j

are distinct. Under PA,

αPLS
J ≡ [E(SNT )]

q−1E(bNT ) = N−1/2ΣJ
j=1σ

2q
j Φ(j)β(j);

APLS
1:J ≡ (αPLS

1 , ...,αPLS
J ) = N−1/2(Φ(1)β(1), ...,Φ(J)β(J))D̄

∗
0(R);

P PLS
1:J ≡XAPLS

1:J = N1/2G∗
0D̄

∗
0.

It can be also shown that

δPLS
1:J ≡ [E(P PLS

1:J
′P PLS

1:J )]−1E(P PLS
1:J

′y) = N−1/2[D̄
∗
0]

−11J ,

where 1J is the J × 1 vector of ones. With these results, we can show that the forecast for
yT+2 with the population versions of the �rst J PLS factors is

yPLS
T+2|J ≡ x′

·T+1A
PLS
1:J δ

PLS
1:J = ΣJ

j=1f
′
(j)β(j) = y∗T+2.
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The optimal number of the PLS factors for forecasting yT+2 is J , which is the number of
the distinct factor variances, unless some of the β(j) are zero vectors or scalar. Thus, unless
all the factors in f •t have distinct variances, the forecasting by the PLS method requires
a smaller number of factors than the forecasting by the PC method. For an extreme case
where all factor variances are the same, using the �rst PLS factor is su�cient for estimate
the optimal forecast.

Even for more general cases in which the predictor variables xit contain idiosyncratic
components, the results obtained under PA asymptotically hold if the error groups {ut+1}
and {eit} are independent. Kelly and Pruitt (2015) consider the asymptotic properties of the
PLS factors under this assumption and two additional assumptions: all factor variances are
distinct (k(j) = 1 for all j = 1, ... , J) and some of the factors f (j)t are uncorrelated with
yt+1 (i.e., β(j) = 0k(j)×1 for some j). Under these assumptions, the asymptotically optimal
number of the PLS factors for forecasting yT+2 equals the number of the factor vectors f (j)t

that are correlated with yt+1.
Our study has two novelties compared to Kelly and Pruitt (2015). The �rst is that

we allow some factors to have the same variances. The second is that we investigate the
properties of the forecasting results obtained using more than the optimal number of PLS
factors used. Groen and Kapetanio (2016) consider an alternative model in which the pre-
dictor variables xit are directly correlated with yt+1, not indirectly through the latent factors
f •t. Speci�cally, they consider a model that consists of equation (4) and a forecast model
yt+1 = x′

•tβ
x + ut+1, where β

x is an N × 1 coe�cient vector. For this case, ŷ∗T+2 = f ′
•T+1β

is no longer optimal forecast even if both f •T+1 and β are known. With some restrictive
assumptions on E and βx, Groen and Kapetanio (2016) show that the PLS regression could
generate more accurate forecasting results than the PC regression. For the model given in
equations (4) and (5), their �nding suggests that the PLS regression could be a powerful
forecasting method, particularly when the idiosyncratic components of xit (eit) are corre-
lated with yt+1. For our asymptotic analysis we do not consider such cases. However, it is
interesting that idiosyncratic components of some predictors are correlated with yt+1, so we
consider some of such cases in our simulation experiments.

2.2 Assumptions

In this subsection, we make formal assumptions for our asymptotic analysis and state the
main results. Let m = min{N, T}; M = max{N, T}; and let η denote a generic positive
constant. All of the asymptotic assumptions are made for the cases in which as m → ∞.

Assumption 1 (A.1): (i) The variable sets, {f •t}, {ϕ•i}, {eit}, and {ut+1} are mutually
independent, while the variables within each group could be correlated. (ii) The variables in
the 4 groups have �nite moments at least up to the 4th order. (iii) E(f •t) = 0K×1, E(eit) = 0,
and E(ut+1) = 0, for all i and t.

Assumption 2 (A.2): For j, j′ = 1, ... , J and j ̸= j′, T−1F ′
(j)F (j) →p σ2

jIk(j) and

T−1F ′
(j)F (j′) →p 0k(j)×k(j′), where σ2

1 > σ2
2 > ... > σ2

J > 0, ks(j) = Σj
h=1k(h), and K =

ks(J). That is, Ω̂F = T−1F ′F →p ΩF = diag(σ2
1Ik(1), ..., σ

2
RIk(J)).

Assumption 3 (A.3): For j, j′ = 1, ..., J and j′ ̸= j, N−1Φ′
(j)Φ(j) →p Ik(j), N

−1Φ′
(j)Φ(j′)

7



→p 0k(j)×k(j′). That is, Ω̂Φ = N−1Φ′Φ →p IK .

Assumption 4 (A.4): For some real number γ ∈ (0, 1/2], T γ(Ω̂F −ΩF ) →d W F and
Nγ(Ω̂Φ − IK) →d WΦ, where W F and W Φ are some matrices of real or rational random
variables.

Assumption 5 (A.5): (i) For all t and N , E (N−1e′•te•t) < η. (ii) λ1(E
′E/M) = Op(1).

(iii) There exists an increasing integer function of m, mc, such that 0 < limm→∞ mc/m < 1
and λmc (E

′E/M) ≥ η + op(1).

Assumption 6 (A.6): E
(∥∥T−1ΣT

t=1f •teit
∥∥2
2

)
< η and E

(∥∥N−1/2ΣN
i=1ϕ•ieit

∥∥2
2

)
< η for

all i, t, N and T , .

Assumption 7 (A.7): (i) λ1(E(uu
′)) < η for all T . (ii) E

(∥∥T−1/2F ′u
∥∥2
2

)
< η and

E
(∥∥(NT )−1/2E′u

∥∥2
2

)
< η for all N and T . (iii) σ̂2

u ≡ u′u/T →d σ
2
u ∈ (0,∞).

Assumption 8 (A.8): β(j) = 0k(j)×1 for j = R + 1, ... , J .

Some comments follow on (A.1)� (A.8). The part (i) of (A.1) rules out the possibility that
the idiosyncratic errors in the xit are correlated with the error term in the target variable
yt+1. The predictor variables xit are correlated with the target variable yt+1 only through
the factors f •t. Some of the assumptions of independence among the variable groups could
be relaxed for our asymptotic analysis. For example, we may allow some weak dependence
between {f •t} and {eit} as long as (A.6) holds. As discussed in the previous subsection, the
zero-mean assumption on the f •t in 2.2 is made to save notation.

Assumptions (A.2) and (A.3) are the normalization restrictions that are frequently used
for factor model; see, for example, Stock and Watson(2002a). As discussed in the previous
subsection, the assumptions are not restrictive ones. Onatski (2012) have considered the
factor models with an alternative assumption of Φ′Φ = IK instead of (A.3). He refers
as �weak� factors to those whose factor loadings satisfy this alternative assumption and as
�strong� factors to those whose factor loadings satisfy (A.3). In this paper we only consider
strong factors, leaving up the analysis of the cases with weak factors to a future study.

(A.4) implies that Ω̂F and Ω̂Φ are T γ-consistent and Nγ-consistent estimators of ΩF

and ΩΦ, respectively, while the elements in Ω̂F and Ω̂Φ need not be normal. It would be
reasonable to assume that γ = 0.5 for (A.4). In fact, restricting γ to be 0.5 does not alter our
main asymptotic results. However, using γ instead of 0.5, we can observe what parts of our
asymptotic results are a�ected by (A.4). Under (A.4), the eigenvalues of Ω̂F and Ω̂Φ could
be also T γ-consistent and Nγ-consistent for the eigenvalues of ΩF and ΩΦ, respectively. For
example, Anderson (1963) has shown that the eigenvalues of Ω̂F are T 1/2-consistent if the f •t

are iid multivariate normal vectors, In fact, the eigenvalues of Ω̂F areT 1/2-consistent even if
the f •t are not normal; see Fang and Krishnaiah (1982). It is too restrictive to assume that
{f •t} is an iid process. Taniguchi and Krishnaiah (1987) have shown that the eigenvalues of
Ω̂F are T 1/2-consistent if {f •t} is a Gaussian stationary process. More general results related
to the asymptotic distributions of the eigenvalues of sample variance matrices can be found
from Eaton and Tyler (1991).

8



The parts (i) and (ii) of (A.5) can hold even if the idiosyncratic errors eit are cross-
sectionally and/or serially correlated. Some su�cient conditions for (ii) can be found from
Ahn and Horenstein (2013) and Moon and Weidner (2015). Roughly speaking, the parts (i)
and (ii) hold unless too strong cross sectional or serial correlations exist among the errors
e_{it} as in the cases in which the errors contain some common factors. The part (iii) of
(A.5) means that an asymptotically non-negligible number of the eigenvalues of M−1E′E
are bounded away from zero as m → ∞. The condition holds unless the common factors f ·t
can explain most of the predictors perfectly; see Ahn and Horenstein (2013). Under (iii) of
(A.5), Σm

h=1λh((NT )−1E′E) ≥ (mc/m)(c+ op(1)) > 0.
Su�cient conditions for (A.6) are the following: As N → ∞ for each t and as T → ∞,

for each i,

N−1/2ΣN
i=1ϕ•ieit →d N(0K×1,Γt); (7)

T−1/2ΣT
t=1f •teit →d N(0K ,Γi) (8)

where Γi = limT→∞ T−1ΣT
t=1Σ

T
t′=1E(f •tf

′
•t′eiteit′) and Γt = limN→∞N−1ΣN

i=1Σ
N
i′=1E(ϕ•iϕ

′
•i′eitei′t).

Assuming (8), Bai (2003) and have derived the asymptotic distributions of the principcom-
ponent factors and factor loadings. Imagine that the factor loading matrix Φ is observable.
For such cases, the factor vector f •t can be consistently estimated by the OLS regression of
x•t on Φ. The conditions (A.2) and (7) are the su�cient conditions under which the resulting
OLS estimators are asymptotically normal. Similarly, for the cases in which the latent factor
matrix F is observable, the conditions (A.2) and (8) are the su�cient conditions under which
the OLS estimators of ϕ•i obtained by regressing xi• = (xi1, ..., xiT )

′ on F are all consistent
and asymptotically normal.

In fact, (A.6) is stronger than what is needed for our asymptotic result. The weaker con-
ditions that are su�cient for our results are

∥∥(NT )−1/2F ′E
∥∥
F
= Op(1),

∥∥(NT )−1/2Φ′E
∥∥ =

Op(1), and
∥∥(NT )−1/2Φ′E′F

∥∥ = Op(1). It is shown in Appendix (Lemma C.3) that these
conditions hold under (A.1) and (A.6). Part (i) of (A.7) holds if the error terms ut+1 are not
too strongly autocorrelated. Under (A.7) and (A.8), the optimal forecast for yT+2 is y

∗
T+2 =

ΣJ
j=1f

′
(j)T+1β(j). Strictly speaking, y

∗
T+2 is not optimal unless E(ut+1|ut, ut−1, ..., u1) = 0 and

E(u2
t+1|ut, ..., u1) = σ2

u. However, for expository convenience, we refer to y∗T+2 as the optimal
forecast.

(A.8) assumes that only the factors with larger variances are correlated with the target
variable yt+1, and that the other factors with smaller variances have no forecasting power.
This assumption is just for expository convenience. The condition we need for our analytical
results is that R groups of the factors are correlated with the target variable, while the other
J − R groups are not. Kelly and Pruitt (2015) have considered the cases in which k(j) = 1
for all j = 1, ... , R (i.e., the �rst R strongest factors have distinct asymptotic variances).
Similar to (iii) of PA in the previous subsection, (A.8) allows some factors to have the same
asymptotic variances. For each j ≤ R, not all factors in f (j)t need to be correlated with
yt+1. Only a proper subset of the factors may be correlated with yt+1.

2.3 Spurious Correlation between PLS Factors and Target Variable

One problem in using the PLS factors for forecasting is that if more than the �rst R PLS
factors are used, the added PLS factors could be spuriously correlated with the target vari-
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able: they have in-sample explanatory power for the target variable, while they deteriorate
the forecasting power of the regression with them.

To see why, we here consider an extreme case in which no common factors exist in the
predictor variables xit so that K = J = 0 and X = E. For this case, the predictor variables
xit have no power to forecast yt+1. Nonetheless, the �rst PLS factor is positively correlated
with the target variable even asymptotically. Observe that

αPLS
1 =

1

T 1/2

E′u

(NT )1/2
;

p̃PLS
1

(NT )1/2
=

1

T 1/2

E

(NT )1/2
cL;

y′p̃PLS
1

N1/2T
=

1

T
c′LcL

where∥cL∥2 ≡
∥∥(NT )−1/2E′u

∥∥
2
= Op(1) by (A.7). In addition,

p̃PLS
1

′p̃PLS
1

NT
=

1

Tm
c∗L

′ΛL
∗c∗L ≤ 1

Tm
λ∗
1c

∗
L
′c∗L ≤ 1

Tm
λ∗
1c

′
LcL

where Ξ∗
L = Ξ(E′E/M |1 : N), Λ∗

L = Λ(E′E/M |1 : N), c∗L = Ξ∗
L
′cL, λ

∗
1 = λ1(E

′E/M), and
the last inequality is by the fact that c∗L

′c∗L = c′LP(Ξ∗
L)cL ≤ c′LcL. Then, the R2 from the

regression of y on p̃PLS
1 yields

R2
PLS,1 ≡

y′P(p̃PLS
1 )y/T

y′y/T
=

m

T

1

σ̂2
u

(c′LcL)
2

c∗L
′Λ∗

Lc
∗
L

≥ m

T

1

σ̂2
u

c′LcL
λ∗
1

> 0

where λ∗
1 > 0 by (A.5). If m/T → 0, that is, if T is dominantly larger than N , then,

R2
PLS,1 →p 0. However, if m/T = O(1), that is, if neither of T and N is dominantly larger

than the other, R2
PLS,1 is asymptotically positive because c′LcL and λ∗

1 are positive by (A.5)

and (A.7). This indicates that the PLS factor p̃PLS
1 and the target vector y are �spuriously�

correlated unless T is dominantly larger than N .
The spurious correlation problem may also produce poor forecasting outcome. Notice

that

δ̃
PLS

1:1 =
p̃PLS
1

′y/(NT )

p̃PLS
1

′p̃PLS
1 /(NT )

=
c′LcL/(TN

1/2)

c∗L
′Λ∗

Lc
∗
L/(Tm)

=
m

N1/2

c′LcL
c∗L

′Λ∗
Lc

∗
L

.

Thus, we have

ỹPLS
T+2|1 = x

′
•T+1α̃

PLS
1 δ̃

PLS

1:1 =
m1/2

T 1/2

c′LcL
c∗L

′Λ∗
Lc

∗
L

e′·T+1

N1/2

E′u

M1/2
.

Using the fact that e′·T+1E
′u is a scalar and (A.5) and (A.7), we can also obtain

E

(∥∥∥∥ e′•T+1E
′u

N1/2M1/2

∥∥∥∥2
2

)
= O(1).

because

E

(∥∥∥∥ e′•T+1E
′u

N1/2M1/2

∥∥∥∥2
2

∣∣∣∣∣E, e•T+1

)
≤
∥∥∥∥e′•T+1

N1/2

∥∥∥∥2
2

∥∥∥∥ E

M1/2

∥∥∥∥2
2

∥E(uu′)∥2 = Op(1).

These results indicate that
∣∣∣ỹPLS

T+2|1 − y∗T+2

∣∣∣ = ∣∣∣ỹPLS
T+2|1

∣∣∣ = Op((m/T )1/2), where y∗T+2 = 0.

Thus, ifN/T → 0, then,
∣∣∣ỹPLS

T+2|1 − y∗T+2

∣∣∣→p 0 asm → ∞. In contrast, whenm/T = O(1) > 0
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(that is, when m = T or when neither of N and T is dominantly larger than the other),
ỹPLS
T+2|1 is not a consistent estimator of y

∗
T+2.

While this example is a special case in which K = 0 and the �rst PLS factor is used for
the prediction of yT+2, it suggests that in general, the forecast for yT+2 obtained using more
than R PLS factors may have poor asymptotic and �nite-sample properties.

2.4 Main Results

This subsection reports our main asymptotic results. All of the results hold as N, T → ∞
jointly. We need some notation to state our results. Set ks(0) = 0. For j = 1, ..., J , we
de�ne

ΛSNT

(j) = Λ(SNT |ks(j − 1) + 1 : ks(j));

ΞSNT

(j) = Ξ(SNT |ks(j − 1) + 1 : ks(j));

cSNT

(j) = ΞSNT

(j)
′bNT

Here, ΛSNT

(j) is a diagonal matrix whose diagonal entries are the eigenvalues of SNT which

converge to σ2
j , the j-th largest largest asymptotic factor variance. The matrix ΞSNT

(j) is the

matrix of the eigenvectors corresponding to the eigenvalues in ΛSNT

(j) .
Similarly, we also de�ne

ΛSNT
L = Λ(SNT |K + 1 : m); ΞSNT

L = Ξ(SNT |K + 1 : m); cSNT
L = ΞSNT

L
′bNT .

The matrix ΛSNT
L is a diagonal matrix that contains the rest of the eigenvalues of SNT

other than the �rst K largest ones. The matrix ΞSNT
L is the matrix of the eigenvectors

corresponding to the eigenvalues in ΛSNT
L . A technical point is worth noting related to ΞSNT

L

and ΛSNT
L . When N > T , for all integers h > T , λh(SNT ) = 0, which in turn implies

(NT )−1/2Xξh(SNT ) = 0T×1. For this result, we can have

Ξ(SNT |K + 1 : N)[Λ(SNT |K + 1 : N)]q−1Ξ(SNT |K + 1 : N)′ = ΞSNT
L (ΛSNT

L )q−1cSNT
L

for both cases with N > T and T ≥ N .
With the above notation and result, we can show that

α̃PLS
q = (SNT )

q−1bNT = ΣJ
j=1Ξ

SNT

(j) (ΛSNT

(j) )q−1cSNT

(j) +ΞSNT
L (Λ

SNT )
L

q−1cSNT
L . (9)

Thus, the asymptotic property of the q−th PLS coe�cient vector α̃PLS
q depends on those of

the eigenvalues and eigenvectors of the matrix SNT , the vector bNT , and the vectors cSNT

(j)

and cSNT
L . The asymptotic properties of these terms are given in the following Lemma.

Lemma 2.4.1: Under (A.1) � (A.8), the following holds.

(i) λh(SNT ) = σ2
j +Op(m

−γ), for h = ks(j − 1) + 1, ..., ks(j) and j = 1, ..., J .

(ii) λh(SNT ) = Op(m
−1), for h = K + 1, K + 2, ...,m.

(iii)
∥∥bNT − ΣR

j=1σ
2
jN

−1/2Φ(j)β(j)

∥∥
2
= Op(T

−γ).
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For each j = 1, ..., R, there exists some orthonormal matrix O∗
jj such that

(iv)
∥∥∥ΞSNT

(j) −N−1/2Φ(j)O
∗
jj

∥∥∥
F
= Op(m

−γ), for j = 1, ..., J ;

(v)
∥∥∥cSNT

(j) −O∗
jj

′σ2
jβ(j)

∥∥∥
2
= Op(m

−γ), for j = 1, ..., R.

For j = R + 1, ..., J ,

(vi)
∥∥∥cSNT

(j)

∥∥∥
2
= Op(m

−γ).

Let HNT = (NT )−1/2ΞSNT
L

′Q(Φ)E′Q(F̃ ) and F̃ = F +EΦ(Φ′Φ)−1. Let rNT be an m× 1
random vector with E (∥rNT∥2) = Op(1) which is independent of u. Then,

(vii)
∥∥cSNT

L − T−1/2HNTu
∥∥
2
= Op(m

−3/2);

(viii)
∥∥T−1/2HNTu

∥∥
2
= Op(T

−1/2);

(ix)
∥∥T−1/2r′NTHNTu

∥∥
2
= Op((Tm)−1/2).

Some remarks follow on (vii) � (ix) of Lemma 2.4.1. First, (vii) and (viii) of Lemma 2.4.1
imply that

∥∥cSNT
L

∥∥
2
= Op(T

−1/2 +m−3/2). Second, the convergency speed of cSNT
L depends

on the term T−1/2HNTu, which is a function of the error terms in E and u. As it turns out
later, the term T−1/2HNTu is the major source of the spurious correlation problem discussed
in the previous subsection. While individual error terms in e•t are uncorrelated with the error
ut+1, linear combinations of the N error terms in e·t could appear to be spuriously correlated
with ut+1 when N is large. An intuition on this result is that for a regression estimation,
using more regressors for a dependent variable increases the R-square measure even if the
regressors have no explanatory power.

We now consider the properties of the PLS coe�cient vectors α̃PLS
q . In order to make

our asymptotic analysis easier, we need to modify equation . De�ne

µSNT
j = λSNT

ks(j−1)+1, for J = 1, ..., R;

d0(q) = ((µSNT
1 )q−1, (µSNT

2 )q−1, ..., (µSNT
R )q−1)′;

D0(q) = (d0(1),d0(2), ...,d0(q)).

Notice that µSNT
j is the largest one in the jth group of the eigenvalues, λSNT

ks(j−1)+1, ... , λ
SNT

ks(j).

Notice also thatD0(q) is a Vandermonde matrix. By construction,D0(R) is a square matrix
which is invertible because the µSNT

j (j = 1, ..., R) are all distinct even asymptotically. By

Lemma 2.4.1, µSNT
j →p σ2

j as m → ∞.
With the terms de�ned above, we can easily show that

α̃PLS
q = V 0d0(q) + vH1(q) + vH2(q) + vL(q),
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where

V 0 = (ΞSNT

(1) c
SNT

(1) , ...,ΞSNT

(R) c
SNT

(R) );

vH1(q) = ΣR
j=1Ξ

SNT

(j)

[
(ΛSNT

(j) )q−1 − ( ¯ΛSNT

(j) )q−1
]
cSNT

(j) ;

vH2(q) = ΣJ
j=R+1Ξ

SNT

(j) (ΛSNT

(j) )q−1cSNT

(j) ;

vL(q) = ΞSNT
L (ΛSNT

L )q−1ΞSNT
L

′bNT = ΞSNT
L (ΛSNT

L )q−1cSNT
L

where Λ̄
SNT

(j) = µSNT
j Ik(j). Thus,

Ã
PLS

1:q = V 0D0(q) + V H1(q) + V H2(q) + V L(q) (10)

where V H1(q) = (vH1(1), ...,vH1(q)), and V H2(q) and V L(q) are de�ned similarly.

The asymptotic property of each term in ˜αPLS
q and Ã

PLS

1:q is stated in the following lemma

and corollary. It is shown that V 0 is the asymptotically dominant term in α̃PLS
q .

Lemma 2.4.2: De�ne

ΠNT = N−1/2[Φ(1)β(1),Φ(2)β(2), ...,Φ(R)β(R)];

ΣR = diag(σ2
1, σ

2
2, ..., σ

2
R).

Under (A.1) � (A.8), the following holds.

(i) ∥V 0 −ΠNTΣR∥F = Op(m
−γ);

(ii) ∥vH1(q)∥2 = Op(m
−γ); ∥vH2(q)∥2 = Op(m

−γ);

(iii) ∥vL(q)∥2 = Op

(
m−(q−1)(T−1/2 +m−3/2)

)
.

Corollary 2.4.2: Under (A.1) � (A.8),

(i) ∥V 0D0(q)−ΠNTΣRD0(q)∥F = Op(m
−γ);

(ii) ∥V H1(q)∥F = Op(m
−γ); ∥V H2(q)∥F = Op(m

−γ);

(iii) ∥V L(q)∥F = Op

(
T−1/2 +m−3/2

)
Lemma 2.4.2 and Corollary 2.4.2 imply our �rst main result. Stated formally:

Theorem 1: De�ne gT+1 = (f ′
(1),T+1β(1), ...,f

′
(R),T+1β(R))

′. Under (A.1) � (A.8), for
q = 1, ... , R,

(i)
∥∥∥ÃPLS

1:q −ΠNTΣRD0(q)
∥∥∥
F
= Op(m

−γ);

(ii)
∥∥∥N−1/2Ã

PLS

1:q
′x•T+1 −D0(q)

′ΣRgT+1

∥∥∥
F
= Op(m

−γ).
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The �rst part of Theorem 1 implies that Ã
PLS

1:q and ΠNTΣRD0(q) span the same linear
space asymptotically. When q = R, the matrix D0(R) is invertible as we discussed above.

Thus, Ã
PLS

1:R and ΠNT span the same space asymptotically. When q = R, the second part

of Theorem 1 implies that
∣∣∣1′

RΣ
−1
R [D0(R)′]−1N−1/2Ã

PLS

1:q
′x·T+1 − y∗T+2

∣∣∣= Op(m
−γ), because

y∗T+2 = 1′
RgT+1.

We now consider the asymptotic properties of the PLS factors. De�ne

G0 = (NT )−1/2XV 0;

gH1(q) = (NT )−1/2XvH1(q); gH2(q) = (NT )−1/2XvH2(q)

gL(q) = (NT )−1/2XvL(q)

With this notation, we have

(NT )−1/2p̃PLS
q = (NT )−1/2Xα̃PLS

q = G0d0(q) + gH1(q) + gH2(q) + gL(q) (11)

Because gH1(q) = P(G0)gH1(q) +Q(G0)gH1(q), equation eq:plsfq is equivalent to

(NT )−1/2p̃PLS
q = (NT )−1/2Xα̃PLS

q = G0d̂0(q) + g
c
H(q) + gL(q),

where

d̂0(q) = d0(q) + (G′
0G0)

−1G′
0gH1(q);

gcH(q) = (Q(G0)gH1(q), gH2(q)).

By eq:plsfq, we also have

(NT )−1/2P̃
PLS

1:q = G0D̂0(q) +G
c
H(q) +GL(q), (12)

where

D̂0(q) = (d̂0(1), ..., d̂0(q)) =D0(q) + (G′
0G0)

−1G′
0GH1(q);

Gc
H(q) = Q(G0)GH1(q) +GH2(q),

and GL(q) is similarly de�ned.
Two remarks follow on equation eq: PLSFQ. First, by construction, the matrices G0,

Gc
H , and GL are mutually orthogonal. This structure facilitates our asymptotic analysis.

Second, we merge Q(G0)GH1(q) and GH2(q) into G
c
H(q) because the Frobenius norms of

the two matrices are both Op(m
−γ).

Consider the case in which R = K; that is, all of the factors f ·t have distinct asymptotic
variances and are correlated with the target variable yT+2. For the case, G

c
H(q) = 0T×q and

G0D̂0(q) = G0D0(q). Thus, the asymptotic property of P̃
PLS

1:q depends on G0D0(q) and
GL(q). In contrast, when R < K, that is, when k(j) > 1 for some j = 1, ..., R and/or R < J ,

the asymptotic property of P̃
PLS

1:q also depends on Gc
H(q).

The asymptotic properties of the terms that appear in the PLS factors are stated in the
following lemma and corollary.

Lemma 2.4.3: Under (A.1) � (A.8), the following holds for q ≥ 1.
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(i)
∥∥G0 − T−1/2(F (1)β(1), ...,F (R)β(R))ΣR

∥∥
F
= Op(m

−γ);

(ii)
∥∥T−1/2y′G0 − (β′

(1)β(1), ...,β
′
(R)β(R))Σ

2
R

∥∥
2
= Op(m

−γ);

(iii) ∥gcH(q)∥2 = Op(m
−γ); ∥gL(q)∥2 = Op

(
m−(q−1/2)(T−1/2 +m−3/2)

)
;

(iv)
∥∥∥d̂0(q)− d0(q)

∥∥∥
2
= Op(m

−γ);

(v)
∥∥T−1/2y′gcH(q)

∥∥
2
= Op(m

−2γ);
∥∥T−1/2y′gL(q)

∥∥
2
= Op

(
m−(q−1)(T−1/2 +m−3/2)2

)
.

Corollary 2.4.3: Under (A.1) � (A.8), the following holds for q ≥ 1.

(i) ∥Gc
H(q)∥F = Op(m

−γ); ∥GL(q)∥F = Op(m
−1/2(T−1/2 +m−3/2));

(ii)
∥∥∥D̂0(q)−D0(q)

∥∥∥
F
= Op(m

−γ);

(iii)
∥∥T−1/2y′

H
c(q)
∥∥
2
= Op(m

−2γ);
∥∥T−1/2y′GL(q)

∥∥
2
= Op

(
(T−1/2 +m−3/2)2

)
Lemma 2.4.3 and Corollary 2.4.3 indicate that the asymptotically dominant term in P̃

PLS

1:q

is G0. For q ≤ R, the asymptotic properties of the q PLS factors in P̃
PLS

1:R are determined
by G0D0(q). Thus, we can obtain the following results.

Lemma 2.4.4: Assume that (A.1) � (A.8) hold. When R < K,

(i)
∥∥∥(NT )−1P̃

PLS

1:R
′P̃

PLS

1:R − D̂0(R)G′
0G0D̂0(R)

∥∥∥
F
= Op(m

−γ);

(ii)
∥∥∥N−1/2T−1P̃

PLS

1:R
′y − D̂0(R)′T−1/2G′

0y
∥∥∥
2
= Op(m

−2γ).

When R = K,

(iii)
∥∥∥(NT )−1P̃

PLS

1:R
′P̃

PLS

1:R −D0(R)G′
0G0D0(R)

∥∥∥
F
= Op

(
m−1(T−1/2 +m−3/2)2

)
;

(iv)
∥∥∥N−1/2T−1P̃

PLS

1:R
′y −D0(R)′T−1/2G′

0y
∥∥∥
2
= Op

(
T−1/2 +m−3/2)2

)
.

With Lemma 2.4.4, we can obtain our second main result:

Theorem 2: Under (A.1) � (A.8),

(i)
∥∥∥N1/2δ̃

PLS

1:R − [D0(R)]−1Σ−1
R 1R

∥∥∥
2
= Op(m

−γ);

(ii)
∥∥∥ỹPLS

T+2|R − y∗T+2

∥∥∥
2
= Op(m

−γ);
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(iii) R2
1:R ≡

y′P
(
P̃

PLS
1:R

)
y

y′y
→p R2

max ≡
ΣR

j=1σ
2
jβ

′
(j)β(j)

ΣR
j=1σ

2
jβ

′
(j)β(j)+σ2

u
.

Two remarks on Theorem 2 follow. First, the theorem indicates that the forecast for
yT+2 obtained using the �rst R PLS factors, ỹPLS

T+2|R, is a consistent estimator of the optimal

forecast, y∗T+2 = ΣR
j=1f

′
(j)T+1β(j). We can show that the forecast by a fewer number of PLS

factor is not consistent for y∗T+2. Thus, the minimum number of the PLS factors that can
produce a consistent estimator of y∗T+2 is R, the number of distinct asymptotic variances
of the common factors in f ·t that are correlated yt+1. For example, if all the factors have
the same asymptotic variances, then the �rst PLS factor is su�cient to produce a consistent
estimator of y∗T+2. Given this �nding, we from now on refer to the R factors as �informative�
PLS factors.

Second, in (iii) of Theorem 2, R2
max is the probability limit of the in-sample R2 from the

regression of y on the ks(R) unobservable common factors in F (1), ... , F (R). Interestingly,
the result in (iii) of Theorem 2 indicates that the in-sample �t of the regression of y on R
PLS factors is as good as that of the regression of y on ks(R) relevant latent factors.

We now consider the forecasting with more than R PLS factors. Speci�cally, we consider
the cases in which the �rst (R + 1) PLS factors are used. Observe that

P(P̃
PLS

1:R+1) = P(P̃
PLS

1:R ) +P(Q(P̃
PLS

1:R )p̃PLS
R+1).

This implies that the asymptotic properties of the forecast by the �rst (R + 1) PLS factors

depend on P(P̃
PLS

1:R ) and Q(P̃
PLS

1:R )p̃PLS
R+1 . More speci�cally, the asymptotic property of

ỹPLS
T+2|R+1 depends on the following three terms:

θ̃ = (P̃
PLS

1:R
′P̃

PLS

1:R )−1P̃
PLS

1:R
′p̃PLS

R+1 ;

Y1,NT = p̃PLS
R+1

′Q(P̃
PLS

1:R )p̃PLS
R+1/(NT );

Y2,NT = p̃PLS
R+1

′Q(P̃
PLS

1:R )y/(N1/2T ).

The following Lemma states the asymptotic properties of Y1,NT and Y2,NT :

Lemma 2.4.5: Assume that (A.1) � (A.8) hold. When R < K,

(i)
∥∥∥θ̃ − [D0(R)]−1d0(R + 1)

∥∥∥
2
= Op(m

−γ);

(ii) Y1,NT = Op(m
−2γ); Y2,NT = Op(m

−2γ).

When R = K,

(iii)
∥∥∥θ̃ − [D0(R)]−1d0(R + 1)

∥∥∥
2
= Op

(
m−1(T−1/2 +m−3/2)2

)
;

(iv) Y1,NT = Op

(
m−1(T−1/2 +m−3/2)2

)
; Y2,NT = Op

(
(T−1/2 +m−3/2)2

)
.
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Some remarks on Lemma 2.4.5 follow. The R2 from the regression of y on the �rst (R+1)

PLS factors P̃
PLS

1:R depends on both Y1,NT and Y2,NT because

y′P(P̃
PLS

1:R+1)y

T
=
y′P(P̃

PLS

1:R )y

T
+
y′P(Q(P̃

PLS

1:R )p̃PLS
R+1)y

T
=
y′P(P̃

PLS

1:R )y

T
+

(Y2,NT )
2

Y1,NT

.

When R < K, m2γY1,NT and m2γY2,NT are positive random variables. Consequently,
(Y2,NT )

2/Y1,NT = Op(m
−2γ) = op(1). Thus, using the (R + 1)-th PLS factor additionally

does not change the asymptotic goodness of �t of the PLS regression. In contrast, when
R = K,

(Y2,NT )
2/Y1,NT = Op

(
m(T−1/2 +m−3/2)2

)
= Op(m/T ).

If m/T → 0 as m → ∞, then (Y2,NT )
2/Y1,NT = op(1). Thus, once again, the asymptotic

goodness of �t of the PLS regression is unaltered when the (R + 1)-th PLS factor is added.
However, if m/T = O(1) > 0, the ratio (Y2,NT )

2/Y1,NT becomes a positive Op(1) variable,
so that R2

1:R+1 = R2
max +Op(1) > R2

max.
In short, when R = K and T is not dominantly larger than N , use of the p̃PLS

R+1 in addition

to P̃
PLS

1:R makes the part of the PLS factors spuriously correlated with the target variable
asymptotically important. We state this result formally:

Theorem 3: Assume that (A.1) � (A.8) hold. When R = K and N/T = O(1) > 0,

(i) T−1y′P(P̃
PLS

1:R+1)y = ΣR
j=1σ

2
jβ

′
(j)β(j) + |Op(1)| > ΣR

j=1σ
2
jβ

′
(j)β(j).

When R < K, or when R = K and N/T → 0,

(ii) T−1y′P(P̃
PLS

1:R+1)y →p Σ
R
j=1σ

2
jβ

′
(j)β(j).

Theorem 3 is for the cases in which the (R + 1)-th PLS factor is additionally used. In
fact, it could be shown that the PLS regressions using at least the �rst R and up to K PLS
factors produce asymptotically the same R2, R2

max. In contrast, use of more than K PLS
factors may trigger the spurious correlation problem. However, this asymptotic result does
not necessarily imply that using K PLS factors is a safe bet in case in which R is unknown.
Our simulation results reported in section 1.3 indicates that use of more than $R$ PLS
factors often increases in-sample R2 sharply while producing poor forecasting results.

Finally, we investigate the performance of the forecast for yT+2 obtained by using the
�rst (R + 1) PLS factors. By the inversion rule for partitioned matrix, we can show

N1/2δ̃1:R+1 =
(
(NT )−1P̃

PLS′
1:R+1P̃

PLS

1:R+1

)−1

N−1/2T−1P̃
PLS′
1:R+1y

=

(
(NT )−1

(
P̃

PLS′
1:R P̃

PLS

1:R P̃
PLS′
1:R p̃PLS

R+1

p̃PLS′
R+1 P̃

PLS

1:R p̃PLS′
R+1 p̃

PLS
R+1

))−1

N−1/2T−1

(
P̃

PLS′
1:R y
p̃PLS′
R+1 y

)
.

=

(
N1/2δ̃1:R

0

)
−
(
θ̃
−1

)
YNT ,
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where YNT = Y1,NT/Y2,NT . Using this result and Lemmas 2.4.5, we can obtain our �nal
main result.

Theorem 4: Under (A.1) � (A.8), the following holds.

(i)
∥∥∥ỹPLS

T+2|R − y∗T+2

∥∥∥ = Op(m
−γ), if R < K.

(ii)
∥∥∥ỹPLS

T+2|R − y∗T+2

∥∥∥ = op(1), if R = K and N/T = o(1)$;

(iii)
∥∥∥ỹPLS

T+2|R+1 − y∗T+2

∥∥∥ = Op(1), if R = K and either N ≥ T or N/T = O(1) > 0.

Some remarks follow on Theorem 4. First, the asymptotic property of δ̃
PLS

1:R+1 (the OLS

estimator from the regression of y on P̃
PLS

1:R+1) depends on YNT . When R < K, bothm2γY1,NT

and m2γY2,NT are positive Op(1) variables and YNT = Op(1). For this case, N1/2δ̃
PLS

1:R+1 is
asymptotically a random variable. In addition, it can be shown that mγ(ỹPLS

T+2|R+1 − y∗T+2)

depends on YNT , whose mean is not zero. That is, the forecast ỹ
PLS
T+2|R+1 is an asymptotically

biased estimator of the y∗T+2. This result suggests that the �nite-sample property of ỹ
PLS
T+2|R+1

may not be as good as that of ỹPLS
T+2|R, even if R < K.

Second, while not shown here, it could be shown that part (i) of Theorem 4 holds for the
regression with more than R PLS factors and up to K PLS factors. Given that these factors
do not contribute to improve the accuracy of the PLS forecasting, we from now on refer to
them as �uninformative� PLS factors.

Third, when R = K, the PLS forecast ỹPLS
T+2|R+1 is expected to have poor �nite-sample

properties if N ≥ T and/or N/T = O(1). The parts of the PLS factors that are spuriously
correlated with the target variable is no longer asymptotically negligible, and they hurt the
accuracy of the PLS forecast. This result does not necessarily imply that when R < K,
use of more than K PLS factors must produce an inconsistent estimator of y∗T+2. However,
as shown in the next section, the regressions with more than K PLS factors almost always
produce poor forecasting results unless T is dominantly larger than N or the variance of the
error term in the target variable is small (that is, the common factors in predictor variables
have strong forecasting power for the target variable). For this reason, we refer to the factors
other than the �rst K factors as �spurious� PLS factors.

In the next section, we consider the �nite sample properties of the �informative,� the
�uninformative,� and the �spurious� PLS factors.

3 Simulation Results

In this section, we report our simulation results. Our simulation setups are designed to
investigate the following. First, we examine how the �nite-sample in-sample and out-of-
sample performances of the PLS regression changes as the number of PLS factors used
increases to the asymptotically optimal number (R), and as the more than the optimal
number of PLS factors is used. Second, we compare the performances of the forecasts
produced by the regressions with PLS factors, principal component (PC) factors, and all
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of predictor variables. Third, we examine whether the actual number of PLS factors that
maximizes forecasting power in �nite sample is close to the asymptotically optimal number
(R) of PLS factors that our asymptotic analysis suggests. Fourth, we consider in-sample
and out-of-sample performances of the R informative, the (K�R) uninformative, and the
spurious PLS factors.

3.1 Simulation Setup

We simulate data following Kelly and Pruitt (2015) and Stock and Watson(2002a). Speci�-
cally, we generate data with the following equations:

yt+1 = a1/2y (ΣK
h=1f

∗
htβ

∗
h) + (1− ay)

1/2ut+1;

xit = a1/2x (ΣK
h=1f

∗
htϕhi) + (1− ax)

1/2e∗it;

f ∗
ht = ρff

∗
h,t−1 + wht;

e∗it = ρee
∗
i,t−1 + ẽit; ẽit = (1 + ρ2c)εi+1,t + ρc(εi,t + εi+2,t).

where the ut+1 (t = 2, ...., T + 2), εit (i = 1, ..., N,N + 1, N + 2), and ϕhi (h = 1, ..., K, i =
1, ..., N) are all random draws from N(0, 1).

All of the factors f ∗
ht are generated with the same AR(1) coe�cient ρf . The initial values

of the K factors f ∗
h0 (h = 1, ...., K) are zeros, while the error terms wht are independently

and identically drawn from N(0, (1 − ρ2f )vh). Under this setup, var(fht) ≈ vh for most of
di�erent t.

All the idiosyncratic error components in xit, e
∗
it, are generated with the same AR(1)

coe�cient ρe. The initial values of the εi0 are independently drawn from N(0, 1). The
idiosyncratic components e∗it are cross-sectionally correlated. We control the degree of cross-
section correlations by changing the value of the parameter ρc. The value of β

∗
h equals one

(zero) if the corresponding factor f ∗
ht is correlated (uncorrelated) with the target variable

yt+1.
After we generate the sum of the common components in xit (Σ

K
h=1f

∗
htϕhi), the part of

yt+1 explained by the common factors (ΣK
h=1f

∗
htβ

∗
h), and the idiosyncratic error components

in xit (e
∗
it), we normalize them such that they have unit variances. By this normalization, we

can use the two parameters ax and ay to control for the explanatory power of the common
factors f ∗

•t = (f ∗
1t, ..., f

∗
Kt)

′ for the predictors xit and the target variable yt+1, respectively.
Notice that the parameter ax equals the probability limit of the average R2 from individual
regressions of xit on the common factors f ∗

·t, while ay equals the probability limit of the R2

from the regression of yt+1 on f
∗
·t.

We use Ω∗
F to denote Var(f ∗

•t) = diag(v1, ..., vK). The variables with superscripted star,
f ∗
ht, e

∗
it, β

∗
h and Ω∗

F are not the same as the variables, fht, eit, βh and ΩF , that are used in
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section 1.2. However, they are related roughly as follows:

fht ≈ a1/2x f ∗
ht/
√
var(ΣK

h=1f
∗
htϕhi);

eit ≈ (1− ax)e
∗
it/
√
var(e∗it);

βh ≈ β∗
h

a
1/2
y

√
var(ΣK

h=1f
∗
htϕhi)

a
1/2
x

√
var(ΣK

k=1f
∗
htβ

∗
h)

;

ΩF ≈ ax
var(ΣK

h=1f
∗
htϕhi)

Ω∗
F .

For each set of the parameter values chosen (T,N,K, ΩF , ax, ay, ρf , ρe, and ρc), we
generate 1,000 di�erent samples. Each sample contains (T + 1) observations. The �rst T
observations are used to estimate the parameters that are needed to forecast yT+2. The PLS
factors are computed by the NIPLS algorithm introduced in Appendix A. The last observa-
tion is used to compute the forecasting errors by di�erent forecasts. Using the forecasting
errors from the 1,000 samples, we compute the following out-of-sample R2 of a forecast, ŷT+2:

R2
OS ≡ 1−

Σ1000
s=1 (y

[s]
T+2 − ŷ

[s]
T+2)

2

Σ1000
s=1 (y

[s]
T+2 − ȳ[s])2

where ȳ[s] = T−1ΣT
t=1y

[s]
t+1 and s indexes simulated samples. The second term of R2

OS is a
ratio of the mean square error (MSE) of the forecast and the MSE of the target variable's
historical mean. When the forecast is more accurate than the historical mean, the out-of-
sample R2

OS must be a positive number. In contrast, when the historical mean outperforms,
the measure becomes negative. The R2

OS measure is also used in Kelly and Pruitt (2015).
Our benchmark case is the case in which data are generated with N = T = 100, β∗ =

(β∗
1 , β

∗
2 , β

∗
3 , β

∗
4)

′, Ω∗
F = diag(3, 3, 5, 5), ax = 0.2, ay = 0.7, and ρf = ρe = ρc = 0.5. Under

this setup, the asymptotically optimal number of PLS factors for forecasting (R) equals two,
because there are two groups of factors the same variance (the factors whose asymptotic
variances equal to 3 and the factors whose asymptotic variances equal to 5) and at least one
factor from each of the two groups is correlated with the target variable. This is the case in
which R = 2 < K = 4 in the notation used in section 1.2. That is, there are two informative
and two uninformative PLS factors. The rest of the PLS factors are spurious factors.

3.2 Simulation Results from the Benchmark Case

We begin by examining how the performances of the forecast by the PLS regression change
as the number of PLS factors used increases. To save space, we denote the number of factors
(PLS or PC factors) used for forecasting by q.

1 reports the results from our benchmark case. The table shows how the in-sample
�ts and out-of-sample forecasting performances of the PLS regression change as di�erent
numbers of factors are used: from one to ten. For each regression with a di�erent number of
PLS factors, the table reports the average and standard error of the in-sampleR2's and the
R2

OS's from individual PLS regressions with 1,000 di�erent samples. We use the adjusted
R2 instead of the usual R2 for the in-sample R2. We do so because the usual R2 always
increases with the number of regressors used, while the adjusted R2 does not. 1 depicts the
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changes in average in-sample (adjusted) R2 and R2
OS as the number of PLS factors used (q)

increases.
1 and 1 show that the in-sample R2 from the PLS regression always increases as more

factors are used. In contrast, the R2
OS from the PLS regression is always peaked at q = 2 = R,

the asymptotically optimal number of PLS factors for forecasting. As q increases further
from 2, the R2

OS keeps falling. For example, as q increases to 10, the R2
OS falls to 18 percent

points while the in-sample R2 increases to 90 percent points. 1 and 1 clearly show that a
PLS regression with higher in-sample R2 does not guarantee a more accurate forecasting
result.

For our benchmark case, our asymptotic results predict that the forecast obtained using
2 to 4 PLS factors are consistent estimators of the optimal forecast y∗T+2 = ΣK

h=1fh,T+1βh.
Interestingly, however, the simulation results reported in 1 and 1 indicate that using 3 or 4
PLS factors would rather produce less accurate forecasts. The results in 1 and 1 suggest that
the PLS regression with more than R and up to K PLS factors would produce less precise
forecasts.

Our asymptotic results also predict that the regressions using more than 4 PLS factors
would produce spuriously high in-sample R2's and low R2

OS's. The results reported in Table
1 and 1 are also consistent with this prediction.

3.3 Comparisons of the Forecasting Powers of PLS and PC Factors

We here compare the forecasting performances of the regressions with PLS factors, principal
component (PC) factors, and all of the predictors. For this comparison, we generate data
with �ve common factors with ΩF ∗ = 5 × I5 and β∗ = (1, 0, 0, 0, 0)′. For these data,
R = 1 < K = 5. That is, the asymptotically optimal number of PLS factors equals one,
while the number of PC factors to be used for optimal forecasting is �ve.

Tables 2 and 3 report the out-of-sample forecasting performances of the PLS regression
with the �rst PLS factor only (PLS1), the PC regression with �rst 5 PC factors (PC5),
and the usual OLS regression with all predictor variables (OLS). Table 2 reports the results
obtained from the data with (N, T ) = (80, 100), while Table 3 reports the results from the
data with (N, T ) = (160, 200). For this simulation exercise, N is chosen to be smaller than T
to make the regression with all available predictors possible. Data are simulated with many
di�erent combinations of the parameters, ax, ay, ρf , ρe, and ρc. To save space, we only report
the results obtained using the data generated with ρf = ρe = ρc. For each combination of
data generating parameters, the highest R2

OS is marked in bold.
Tables 2 and 3 show that the forecasting performance of the OLS regression is always

dominated by those of the PLS1 and PC5 regressions. The R2
OS from the OLS regression is

always negative, indicating that the historical mean of the target variable is a better forecast
than the OLS forecast. This �nding is consistent with the well-known fact that the MSE of
the OLS forecast increases with the number of predictors used; see, for example, Carrasco
and Rossi (2016) and Stock and Watson (2006), among many.

Tables 2 and 3 show that when the common factors' explanatory power for the predictors
is low (ax = 0.1 or 0.2) and their explanatory power for the target variable is relatively high
(ay = 0.5 or 0.7), the PLS1 forecast outperforms the PC5 forecast. This pattern remains the
same even if di�erent AR(1) coe�cients (ρf and ρe) and the cross-section correlation param-
eter (ρc) are used. In general, the PC5 regression produces more accurate forecasts when the
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factors are more weakly autocorrelated and predictor variables' idiosyncratic components
are less serially and cross-sectionally correlated.

One interesting observation from Tables 2 and 3 is that when the PLS1 regression outper-
forms the PC5 regression, it does so by a relatively greater margin. For example, in Table 2,
the R2

OS from the PLS1 regression is almost twice larger than that from the PC5 regression
when ax = 0.1, ay = 0.7, and ρc = ρe = ρf = 0.5: the R2

OS's from the PLS1 and PC5 regres-
sions are 39.9 percent points and 20.5 percent points, respectively. As shown in 3, when the
sample size is doubled while other parameter values remain unchanged, the R2

OS from the
PLS1 regression is still higher than that from the PC5 regression by 15.3 percent points: the
R2

OS's from the PLS1 and PC5 regressions are 48.5 percent points and 33.2 percent points,
respectively.

Tables 2 and 3 also report the number of common factors (K̂) estimated by the Eigenvalue
Ratio (ER) method of method of Ahn and Horenstein (2013). The tables show that when ax
is low, the ER method tends to underestimate the number of common factors in predictor
variables. Not surprisingly, the PC regression with the estimated number of factors (K̂)
signi�cantly underperforms the PL5 regression, especially when ax is low, although these
results are unreported here to save space. When ax is low, the PLS1 regression signi�cantly
outperforms the PC regression with the estimated number of factors more than it does the
PC5 regression.

The main �ndings from Tables 2 and 3 can be summarized as follows. First, the PLS1
regression produces more accurate forecasts than the PC5 regression when the common
factors in predictor variables are relatively weak factors. Second, when the predictors have
stronger factors, the PC5 regression outperforms the PLS1 regression in forecasting, but
generally by a small margin. These results indicate that the PLS regression is a viable
forecasting tool which is particularly useful when the factor structure in predictor variables
is weak.

3.4 Forecasting with Asymptotically Optimal Number of PLS Fac-

tors

We now consider the �nite-sample properties of the PLS regression when the asymptotically
optimal number of PLS factors for forecasting (R) is greater than one. Tables 4 � 6 report
the forecasting performances of the PLS regressions with three di�erent numbers of PLS
factors. The R2

OS's from the PLS regressions with one, two, and three are reported in the
PLS1, PLS2, and PLS3 columns, respectively. All of the data used for the results reported
in Tables 4 � 6 are generated with Ω∗

F = diag(3, 5, 7) anday = 0.7, while di�erent parameter
values are used for ax, ρc, ρe, and ρf . Notice that for all of the cases considered in Tables 4
to 6, the optimal number of PLS factors for forecasting is three (R = 3).

Table 4 reports the forecasting results from the data withN = T = 100 andN = T = 200.
Di�erently from what our asymptotic results predict, the R2

OS from the PLS3 regression is
lowest for all cases. When the common factors' explanatory power for predictor variables is
low (e.g., ax = 0.1), the PLS1 regression more often outperforms the PLS2 regression. In
contrast, as the factors' explanatory power becomes stronger (ax = 0.2 or 0.3), the PLS2
regression more often outperforms the PLS1 regression.

Table 5 reports the forecasting results obtained using larger data: N = T = 1, 000 and
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N = T = 2, 000. Even for these large data, the R2
OS from the PLS3 regression is highest

only once (when ax = 0.3, ρc = ρe = 0.3, ρf = 0, and N = T = 2, 000). For other cases,
the PLS2 regression produces the highest R2

OS. As shown in Table 6, for the unusually
large data with N = T = 7, 000, we can observe that the PLS3 regression outperforms
the PLS1 and PLS2 regressions for some cases. When we have extremely large data with
N = T = 10, 000, the PLS3 regression outperforms the PLS1 and PLS2 regressions for
all di�erent data speci�cations. However, even for the cases in which the PLS3 regression
outperforms the PLS1 and PLS2 regressions, the prediction gain by the PLS regression is
marginal.

The three main implications from Tables 4 � 6 are the following. First, when the asymp-
totically optimal number of PLS factors for forecasting (R) is greater than one, the PLS
regressions using a fewer number of PLS factors very often produce more accurate forecasts
than the PLS regression using R factors, unless the data are exceptionally large. Second, the
PLS1 regression often produces a more accurate forecast than the regressions with PLS fac-
tors, especially when the sample size is small and the common factors in predictor variables
are weak.

Third and �nally, when larger data are used and $R=1$, using more than one PLS factor
could produce more accurate forecasts. However, the accuracy gains by using additional
factors are not substantial. The gains are generally very marginal. This result indicates that
when the optimal number of PLS factors (R) is unknown, using only one PLS factor for
forecasting could be a useful alternative. This is so because, as shown in Table \ref{table1},
using more than $R$ PLS factors can produce much poorer forecasts than the PLS regression
with only one factor.

Why then could the regression with a fewer than R PLS factors produce more accurate
forecasts that the regression with R PLS factors does? There are two possible answers. The
�rst possible answer is that for the simulated data used for Tables 4 � 6, the variances of
the three factors, fht (h = 1, 2, 3) are not su�ciently distinct for PLS regressions unless
exceptionally large data are used. For example, when ax = 0.1 is chosen, the three factors'
variances are 0.3, 0.5, and 0.7, respectively. It is possible that in small samples, these
di�erences in factor variances may not be su�cient to make all of the three PLS factors
have independent forecasting power for the target variable. In unreported experiments, we
have tried to use more dispersed variances for the three factors. However, under our data
generating setting, we need to assign very small variance to one factor to assign much greater
variances to two other factors. For that case, the factor with the smallest variance has too
weak explanatory power for both predictor variables and the target variable. Unless the
sample is exceptionally large, the factor models constructed with such factors are more or
less similar to two or one factor models. For this reason, in the unreported experiments, the
PLS1 and PLS2 regressions very often outperform the PLS3 regression.

The second possible answer is the following. While the PLS factors used for our simulation
exercises are generated by the NIPLS algorithm, they are the orthogonalized versions of the
PLS factors examined in section 1.2. The asymptotically dominant term in the �rst R PLS

factors (P̃
PLS

1:R ) is G0D0(R), where D0(R) is a Vandermonde matrix. It is well known that
Vandermonde matrices are highly ill conditioned matrices in the sense that the columns of a
Vandermonde matrix are highly collinear; see Dax (2017). Thus, the �rst one or two columns
of the matrix G0D0(R), and correspondingly, the �rst and second PLS factors may contain
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most of the forecasting power for the target variable vector y.

3.5 Spurious Correlation Problem and Relative Sizes of N and T

Our asymptotic results suggest that depending on whether T is dominantly larger than N or
not, use of more than K PLS factors for forecasting could exaggerate in-sample goodness of
�t of the PLS regression and produce poor forecasting outcomes. Thus, we now examine how
sensitive the �nite-sample performances of the regressions with more than K PLS factors to
the ratio N/T . We generate data using the parameter values for the benchmark case. we
investigate how the performances of the PLS regression change as the ratio N/T varies.

Figure 2 shows how the out-of-sample forecasting performances of the PLS regressions
with di�erent numbers of PLS factors change as N increases while T is �xed at 100. The
�gure for the case with N = T = 100 is identical to Figure 1. Figure 2 indicates that when
N/T is low, the regressions with more than 4 PLS factors do not signi�cantly underperform
the regressions with smaller number of PLS factors. For example, when N = 20, use of more
than 4 PLS factors does not incur seriously in�ated in-sample R2 nor deteriorated R2

OS.
It appears that the problem of spurious correlations between PLS factors and the target
variable is not severe when N is substantially smaller than T . However, Figure 2 also shows
that the spurious correlation problem becomes substantial as N increases. For the cases with
N closer to or greater than T , the PLS regression produces more highly in�ated in-sample
R2's and lower R2

OS's as more PLS factors are used.
Figures 3 and 4 report the simulation results obtained using di�erent N with T = 200

and T = 500. All other data generating parameter values are the same as those which are
used for the benchmark case. While greater T values are used, theN/T ratios used for the
two �gures are the same as those which are used for Figure 2. The reported results in Figures
3 and 4 are not materially di�erent from those in Figure 2. Overall, the results reported
in Figures 2 � 4 are consistent with the notion that the severity of the spurious correlation
problem and the N/T ratio are inversely related.

3.6 Spurious Correlation Problem and Explanatory Power of La-

tent Factors

Our asymptotic results indicate that the spurious correlation problem occurs by the inter-
action of the error terms in the target variable and predictor variables. Consequently, we
can expect that the spurious correlation problem would be mitigated as the variances of the
errors decrease, or equivalently as the explanatory power of the latent factors for the target
variable and predictor variables. Thus, we now examine how the forecasting performances
of the PLS regression would change as ay or ax increase.

Figure 5 shows how the signi�cance of the spurious correlation problem of the PLS
regression changes as the value of ay (explanatory power of latent factors for the target
variable) changes. The values of other data generating parameters used for Figure 5 are the
same as those that are used for Figure 1. Figure 5 shows that the signi�cance of the spurious
correlation problem falls as ay increases (the variance of the error term in the target variable
falls). When ay = 0.1, the regression with 10 PLS factors yields about negative 100 percent
points of R2

OS. This means that the MSE of the forecast from the PLS regression is twice
as large as the MSE of the historical mean of the target variable. In contrast, when ay = 1
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(no error in the target variable), the R2
OS is peaked when two PLS factors are used and it

remains little changed as more PLS factors are used. It is clear that the degree of spurious
correlation between PLS factors and the target variable is strongly negatively related to the
explanatory power of the common factors for the target variable (ay).

Figures 6 � 7 report the results obtained replicating the simulation exercises used for
Figure 5, but with greater values of ax (0.5 and 0.7, respectively). The patterns of the PLS
forecasting performance reported in Figures 6 and 7 are virtually identical to those that are
reported in Figure 5.

We now examine how the signi�cance of the spurious correlation problem is related to the
explanatory power of the common factors for predictor variables (ax). To do so, we generate
data with many di�erent values of ax (from 0.1 to 0.99), but with the same values for other
data generating parameters that are used for Table 1 and Figure 1. Figure 8 reports the
results for the cases with ay = 0.7. When ax = 1, that is, when the four common factors
can perfectly explain predictor variables, the 5-th PLS factor is a perfect linear combination
of the �rst 4 PLS factors. For this reason, the maximum value of ax we use is 0.99. Since
ay = 0.7 is used, the regression with two PLS factors is expected to produce the in-sample
and out-of-sample R2's of about 70%.

The main �ndings from Figure 8 are the following. First, when ax is small (the explana-
tory power of the latent factors for predictor variables is weak), the forecasting power of the
regression with the �rst 2 PLS factors is somewhat lower than what our asymptotic results
suggest. Although it is not clear from the �gure, the R2

OS from the regression with 2 PLS
factors is always lower than the expected level of 70%. However, as ax increases, the R2

OS

from the regression with the two PLS factors rises close to 70%.
Second, when ay is low, the in-sample R

2's from the regressions with 3 and 4 PLS factors
are higher than 70%, while the R2

OS's from the same regressions are lower than 70%. This
result contradicts our asymptotic results predicting that the third and fourth PLS factors do
not have additional in-sample explanatory power and additional out-of-sample forecasting
power. The result seems to be consistent with the notion that the uninformative PLS factors
(the third and fourth factors) may also su�er from the spurious correlation problem in �nite
samples, especially when ax is low. The spurious correlation e�ect on the third and fourth
PLS factors weakens as ax increases. For the extreme case with ax = 0.99, the third and
fourth PLS factors perform as our asymptotic results predict: use of the two factors does
not decrease the forecasting power of the PLS regression. In addition, use of the two factors
does not in�ate the in-sample goodness of �t of the regression.

Figure 8 shows that the regressions with more than 4 PLS factors su�er from the spurious
correlation e�ect, even if ax is near to one: the average in-sample R2 are in�ated and the
R2

OS deteriorates as more PLS factors are used.
As Figures 9 and 10 show, the results from Table 8 remain unaltered even if di�erent

values are used for ay (0.5 and 0.3). The patterns of the changes in in-sample and out-of-
sample performances of the PLS regressions by using di�erent numbers of factors used are
similar across Figures 8 to 10.

3.7 Forecasting with Uninformative and Spurious PLS Factors

We here consider how the uninformative and spurious PLS factors would in�uence the quality
of the PLS forecast. Figures 11 and 12 highlight the performances of the uninformative and
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spurious factors in �nite samples. For the �gures, we generate the data using the benchmark
parameter values. For the benchmark case, there are two informative PLS factors and two
uninformative factors, and the rest of the PLS factors are spurious factors. We focus on how
use of the two uninformative factors and other spurious factors would in�uence the quality
of the PLS forecasts. We have seen from Figure 1 and other �gures that using more than
the informative PLS factors decreases the accuracy of the PLS forecast.

Figure 11 zooms up how the patterns of the in-sample and out-of-sample performances
of the regressions using uninformative and spurious factors change as the explanatory power
of the latent factors for predictor variables (ax) increases from 0.2 to 0.995. The average
in-sample R2's from the regressions with di�erent numbers of PLS factors are marked by red
squares connected with dotted line. The R2

OS's are marked by blue circles connected with
solid line. For both lines, the lighter color is associated with the greater value of ax. The
average in-sample R2's and the R2

OS's for the case with ax = 0.2 are identical to those that
are reported in Figure 1.

When predictors have weak factor structure (low ax), using the two uninformative factors
increases the average in-sample R2 and decreases the R2

OS from the PLS regression. Using
spurious factors additionally in�ates the in-sample R2 and decreases the R2

OS even more.
When ax is extremely high (0.995), the two uninformative PLS factors do not in�ate the in-
sample R2 and do not hurt the forecasting accuracy. Both the average in-sample R2 and R2

OS

match the value of ay (0.7) that is used to generate data. In contrast, using the spurious PLS
factors additionally still in�ates the in-sample R2 and deteriorate the forecasting accuracy of
the regression. The case of ax = 0.995 is, of course, an extreme case. For more empirically
plausible cases, using the uninformative PLS factors tends to in�ate the in-sample R2 while
decreasing the forecasting power of the regression.

For Figure 12, we experiment the same simulations conducted for Figure 11, but with
larger data. The data are generated with N = T = 2000. In Figure 12, using the two
uninformative factors no longer hurts the forecasting power of the regression, even when ax
is low. However, using the two uninformative PLS factors tends to in�ate the in-sample �t of
the regression unless ax is very high. For any value of ax, using a larger number of spurious
PLS factors in�ates the in-sample �t and weakens the forecasting power of the regression.

In order to check how the results from Figures 11 and 12 would change if more uninfor-
mative factors are added to predictor variables, we conduct the same simulation exercises
used for Figures 11 and 12, but with a six-factor model with Ω∗

F = diag(3, 3, 3, 5, 5, 5) and
β∗ = (1, 0, 0, 1, 0, 0)′. The results from this additional experiment are reported in Figures
\ref{�gure13} and Figure \ref{�gure14}. For the factor model used for the �gures, there are
two informative and four uninformative PLS factors.

Figure 13 reports the results obtained using the data with N = T = 100 as in Figure 11.
From Figure 13, we can see that the regression using the 6-th PLS factor, which is the fourth
uninformative factor, produces in�ated in-sample R2's and decreased R2

OS's, even when the 6
latent factors have extremely strong explanatory power for predictor variables (ax = 0.995).
When ax < 0.5, all of the four uninformative factors perform as spurious factors do: they
in�ate the in-sample R2 and deteriorate the R2

OS from the regression.
Figure 14 reports the result from the data with N = T = 2, 000 as in Figure 12. Three

out of four uninformative factors perform more consistently with what our asymptotic results
predict. However, the last uninformative factor (the 6-th PLS factor) behaves more like a
spurious factor, especially when ax is low. The main point from Figures 11 � 12 and 13 �
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14 is that using uninformative PLS factors can signi�cantly lower the accuracy of the PLS
forecast, unless data are unusually large.

3.8 Summary

The main messages from our simulation results so far can be summarized as follows. First,
the forecasting with PLS factors could be a viable alternative to the forecasting with PC
factors, especially when the common factors in predictor variables have strong explanatory
power for the target variable while having weak power for predictor variables.

Second, the regressions using spurious factors substantially in�ate in-sample goodness of
�t results while producing signi�cantly poorer out-of-sample forecasting results. Consistent
with our asymptotic results, the negative e�ect of using the spurious factors is weaker when
the data with T substantially larger than N are used for the regression, and/or when the
common factor in predictor variables have strong explanatory power for the target variable.

Third, the asymptotically optimal number of PLS factors for forecasting is R, the number
of the factor groups sharing the same asymptotic variances that are correlated with the target
variables. However, the number of the PLS factors that achieves the maximum forecasting
power in �nite samples is often smaller than $R$, especially when R is large. This problem
does not disappear even if very large data are used (e.g., data with N = T = 2, 000). The
optimal number of PLS factors for forecasting in �nite samples is close to the asymptotically
optimal number, when T is substantially larger than N or explanatory power of the common
factors in predictor variables for the target variable is very strong. Interestingly, these
cases are precisely the cases in which the e�ects of the spurious correlations between PLS
factors and the target variable are weak. It appears that under the environment in which
the spurious correlation between PLS factors and the target variable is not asymptotically
negligible, using the asymptotically optimal number of PLS factors would rather produces
poorer forecasting results than using a fewer number of PLS factors.

Fourth, using uninformative PLS factors can decrease the forecasting power of the regres-
sions with PLS factors, especially when the spurious correlation between PLS factors and
the target variable is strong. One important implication is the following. The total number
(K) of factors in predictor variables can be estimated by numerous estimation methods,
e.g., Bai and Ng (2002), Onatski (2010), Alessi, Barigozzi, and Capasso (2010), and Ahn
and Horenstein (2013), among many. However, our simulation results indicate that using
the estimates from these methods for the number of the PLS factors for forecasting may
not be a good practice. Many of the K PLS factors could be uninformative factors for the
target variables and using the large number of uninformative PLS factors can produce poorer
forecasting results.

Fifth and �nally, using the �rst PLS factor only may not be a bad alternative when the
optimal number of the PLS factors for forecasting is not readily available. Our simulation
results indicate that a large portion of the information for the target variable contained in
PLS factors is in the �rst PLS factor. When the asymptotically optimal number of factors for
forecasting is more than one, the forecasting gain by using more PLS factors in addition to the
�rst PLS factor is not substantial. Also, the regression using a fewer than the asymptotically
optimal number of PLS factors, often produces more accurate forecasts than the regression
using the asymptotically optimal number of PLS factors. The forecasting loss by using only
the �rst PLS factor seems to exceed the loss by using too many PLS factors.
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3.9 Cross-Validation Estimation for the Optimal Number of PLS

Factors

One important question we have not addressed yet is how we can determine the optimal
number of PLS factors for forecasting. In our asymptotic analysis, the number of informative
PLS factors (R) is the optimal number. However, our simulation results indicate that the
optimal number of the PLS factors in �nite samples is often smaller than R. As an alternative
to determine the optimal number of PLS factors for forecasting in �nite sample, we examine
the �nite-sample performances of a cross-validation method.

For the cross-validation method we consider, we divide the whole available data (with
(T + 1) observations) into two parts, training and test data. Let us use int(·) to denote
the integer part of the inside of the parenthesis. The initial training data consist of the
observations from t = 2 to t = int((0.7)(T + 1)) ≡ T ∗ + 1, while the test data set consists
of the observations from t = int((0.7)(T + 1)) ≡ T ∗ + 2 to t = T + 1. For a given time
s ∈ [T ∗ + 2, T + 1], we forecast ys using a given number of PLS factors and the parameter
estimates obtained from the training data from t = 2 to t = s�1. Let MSE(q) be the MSE
of the forecasts for ys obtained using q PLS factors. The cross-validation estimate of the
optimal number of PLS factors, which we denote by R̂CV , is the value of q that minimizes
MSE(q).

In Tables 8 to 11, we compare the forecasting performances of the regressions with di�er-
ent numbers of PLS factors (q = 1, 2, ..., 10) and the regression using the estimated number
of PLS factors by the cross-validation method. We refer to the regression with q PLS factors
as �PLSq� regression. To save space, we only report the forecasting results from the PLS1
to PLS6 regressions, while up to 10 PLS factors were calculated, and cross-validation were
conducted over the 10 PLS factors in all experiments. For the results reported in Tables
8 to 10, we use a �ve-factor model with Ω∗

F = diag(3, 3, 5, 5, 7) and β∗ = (1, 0, 1, 0, 1)′.
For this model, the �rst 3 PLS factors are informative ones and the next 2 PLS factors are
uninformative ones: R = 3 and K = 5. The other parameters are set at their benchmark
values: ax = 0.2, ay = 0.7, and ρf = ρe = ρc = 0.5.

The main �ndings from the results reported in Tables 8 � 10 are as follows. First, consis-
tent with the results reported in Tables 4 and 5, the PLS2 regression very often outperforms
the PLS3 regression despite that q = 3 is the asymptotically optimal number of PLS factors
for forecasting. Second, the forecasting performance of the cross-validation augmented PLS
(CV-PLS) regression is generally comparable to that of the PLS2 regression. Third and
�nally, the performance of the PLS1 regression is not signi�cantly dominated by that of the
CV-PLS regression. In fact, the PLS1 regression often outperforms the CV-PLS regression,
especially when the explanatory power of the factors for the target variable is low, as Table
10 shows. When the CV-PLS regression outperforms the PLS 1 regression, the gain by using
the CV-PLS regression instead of the PLS1 regression is generally marginal. In addition,
the out-of-sample forecasting performance of the PLS1 regression is not far behind that of
the PLS2 regression.

Lastly, we consider a special case that is inspired by Groen and Kapetanio (2016). They
have considered the cases in which all of the predictor variables xit are individually directly
correlated with the target variables, not just indirectly through the latent factors f ·t. Our
asymptotic analysis does not consider such cases. However, it would be interesting to see
how the CV-PLS regression would perform for such cases.
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We here consider a special case in which some predictors have some direct forecasting
power for the target variable. Speci�cally, we consider a case in which the �rst predictor has
some direct forecasting power for the target variable yt+1:

x1t = Σ5
h=1ϕhif

∗
ht + e∗1t; e∗1t = ρ1/2eu u∗

t+1 + (1− ρeu)
1/2v∗1t (13)

where u∗
t+1 = (1−ay)

1/2ut+1 and the v
∗
1t are random draws from N(0, 1). All other predictors

and the target variable are generated by the process explained in subsection 3.1. Observe
that when ρeu = 1, the idiosyncratic component of x1i, e

∗
1t, has perfect information about the

error term of the target variable, ut+1. While we only consider the case in which only one
predictor variable has some direct forecasting power for the target variable, our simulation
results would have some implications for more general cases in which a small number of
predictor variables have some direct forecasting power for the target variable.

Even if some predictor variables have direct forecasting power for the target variable, the
PC factors do not convey such information because they are extracted without using the
information about correlations between predictor variables. However, the PLS factors may
contain the information generated by the correlations between individual predictors and the
target variable.

We generate data using the same benchmark data generating parameter values used
for Tables 8 � 10, except that the �rst predictor variable is generated by (13). Table 11
reports some of the simulation results. When ρeu is low, the PLS2 regression outperforms
other PLS regressions including the CV-PLS regression. This result is consistent with the
results reported in Tables 8 � 11. However, one interesting observation from Table 10 is that
the spurious correction problem by using the sixth PLS factor (which is a spurious factor)
mitigates as ρeu increases. For the cases with ρeu ≥ 0.9, the PLS6 regression signi�cantly
outperforms the PLS1 � PLS3 regressions.

The following conjecture seems to be reasonable for these results. When predictors do not
have strong direct forecasting power (forecasting power conditional on the common factors)
for the target variable, some parts of the PLS factors become spuriously correlated with the
target variables. Using too many PLS factors ampli�es the e�ect of the spurious correlation
and hurts forecasting accuracy. However, when some predictors have strong direct forecasting
power, the spurious components of the PLS factors are asymptotically dominated by the
informative parts of the PLS factors. Consequently, the e�ect of the spurious correlation is
no longer prevalent.

Another interesting observation from Table 10 is that when ρeu ≥ 0.9, the CV-PLS re-
gression outperforms the PLS6 regression, especially when larger data are used. In addition,
the mean of R̂CV exceeds K = 5 (the total number of latent factors in predictor variables).
These results indicate that cross-validation methods are most useful for the PLS regression
when some predictors have strong direct forecasting power of which economists are not aware.
The gain by using the cross-validation method could be substantial. Our simulation results
indicate that PLS users should be advised to estimate the optimal number of PLS factors
by some cross-validation methods.
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4 Empirical Application

In this section, we conduct a typical empirical study to demonstrate applicability of our
results. We use actual macroeconomic data. Total 178 monthly variables were collected
from FRED-MD data of McCracken and Ng (2016), FRED and ISM (Institute for Supply
Management) to closely mimic the dataset Stock and Watson (2002b) used. The data have
732 time series observations, from 1959:01 to 2019:12. Following Stock and Watson (2002b)
and McCracken and Ng (2016), we categorize the variables in the data into eight major
groups: output and income; labor market; housing; consumption, orders and inventories;
money and credit; interest and exchange rates; prices; and stock market.

We conduct 12-month-ahead forecasting exercises. To do so, we transform the data
to make them stationary. The transformation methods are �rst or second di�erencing (in
log form). The detailed information is listed in the appendix. We also standardize the
transformed variables so that they have unit variances and zero means. Finally, we screen
the data for any possible outliers. We drop the outliers from the data and treat them
as missing values. The �nal data set contains a balanced panel of 108 variables and an
unbalanced panel of 70 variables. The missing values are estimated by the EM algorithm of
the PC method with the number of common factors estimated by the ER method of Ahn
and Horenstein (2013).

The following forecasting equation is used for our data analysis:

ŷ
(12m)
t+12|t = â+ b̂

′
f̂ •t + Σp

h=1ĉhyt−h+1, (14)

where ŷ
(12m)
t+12:t denotes the 12 month ahead forecast of a target variable y

(12m)
t+12 made at time

t,f̂ •t is a vector of PLS or PC factors, and â, b̂ and ĉh are OLS estimates. The maximum
number of the AR coe�cients and the maximum number of the factors in f̂ •t are restricted
to be 6 and 12, respectively.

The number of factors used matters for predictive power. We have conducted many
experiments with di�erent choices of the number of PLS or PC factors. First, for both
the regressions with PLS and PC factors, we have tried 12 di�erent numbers of factors:
q = 1, 2, ..., 12. We denote the regression with q PLS (PC) factors by �PLSq� (�PCq�).
Tables 11 and 12 display the forecasting results from the PLS1 � PLS4 and PC1 � PC4
regressions. Second, we estimate the the number of latent factors in predictor variables by
the Bayesian Information Criterion (BIC) method of Stock and Watson (2002b) and the ER
method of Ahn and Horenstein (2013). We denote the regressions with these two estimates
of the number of latent factors by PC-BIC and PC-AH, respectively. Third and �nally,
we estimate the optimal number of PLS factors by the BIC method of Stock and Watson
(2002b) and the Cross-Validation method used in subsection 3.9. The regressions with these
two estimates are denoted by PLS-BIC and PLS-CV, respectively.

The target variables y
(12m)
T+12 are generated as following. We treat real and price variables

as I(1) and I(2) variables in logarithms, respectively, following Stock and Watson (2002b).
Under this assumption, to forecast a real variable such as industrial production (IP), we use
the target variable

y
(12m)
t+12 = (1200/12) ln(IPt+12/IPt),

and the regressors
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yt−h = 1200 ln(IPt−h/IPt−h−1)

In contrast, to forecast a price variable such as Consumer Price Index (CPI), we use the
target variable

y
(12m)
T+12 = (1200/12) ln(CPIT+12/CPIT )− 1200 ln(CPIT+12/CPIT ),

and the regressors

yt−h = 1200∆ ln(CPIt−h/CPIt−h−1).

Since PLS factors computed with target variables, we should have enough time series ob-
servations for the target variables. Target variables with too many missing values may lead
to inaccurate PLS factors making our empirical analysis unreliable. Therefore, we only use
the variables whose time-series observations are more than 80% of the �rst-step estimation
period. This variable selection rule leave us 144 di�erent target variables.

Our empirical analysis is conducted by the following way. Using the data up to a given
time T , we compute the target variables, lagged dependent variables, and PC and PLS
factors. We also estimate the optimal numbers of the PC factors by the BIC method of
Stock and Watson (2002b) and the ER method of Ahn and Horenstein (2013). We also
estimate the number of PLS factors to be used by the BIC of Stock and Watson (2002b) and
the CV method discussed in subsection 3.9. The number of the lagged dependent variables,
p, is estimated by the BIC method of Stock and Watson (2002b) or the CV procedure
discussed in subsection 3.9. With these estimates, the forecasting equation 14 is estimated
by regressing y

(12m)
t+12 on the PC or PLS factor vectors f̂ •t and the p lagged dependent variables

yt−h. This procedure yields the estimated parameters, â, b̂ and the ĉh. With these results, we

make the forecasts for y
(12m)
T+12 , which are denoted by ŷ

(12m)
T+12|T in 14. We repeat ths procedure

using the data up to T + 1 and forecast y
(12m)
T+13 . We continue this exercise until the whole

data are exhausted.
More speci�cally, our �rst forecasting starts from T = 1970:01. at the �rst step, we use

the predictors from 1959:03 to 1970:01 to estimate PLS and PC factors at time T , f̂ •T . The
�rst two-month observations in the data are dropped due to possible second di�erence (in
log) in the data transformation procedure. The optimal number of PC and PLS factors to
be used are also estimated. Second, we estimate equation 14 using the data up to 1970:01.
Third and �nally, using the results from the �rst and second steps, we make the forecasts
for y

(12m)
T+12 , ŷ

(12m)
T+12|T . This procedure repeats until T becomes 2018:12.

For the cross-validation method used for regressions witj PLS factors, we use 70% and 30%
of the available data as the training and test data sets, respectively. For instance, when we
make the forecast for y

(12m)
1971:01 at 1970:01, we use the data {x·T}1966:04T=1959:01and {y(12m)

T+12 }1965:04T=1959:01

as training data because they are roughly 70% of the data available up to 1970:01. Using the
training data, we compute PLS factors and estimate the parameters necessary for forecasting
for each of the possible combinations of the number of PLS factors (q) and the number of
lagged dependent variables yt−h (p). For each possible combination of q and p, we also

compute the forecast, ŷ
(12m)
T+12|T=1966:4. We repeat this procedure for T = 1966:5 and calcuate

ŷ
(12m)
T+12|T=1966:5. By continuing this procedure up to T = 1969:01, we can obtain the set of
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forecasts {ŷ(12m)
T+12|T}1969:01T=1966.4. Comparing {ŷ(12m)

T+12|T}1969:01T=1966.4 and {y(12m)
T+12 }1969:01T=1966.4, we compute

the Mean Square Error (MSE) for each possible combination of q and p. We denote by the
�PLS-CV� forecast for 1971:01 the forecast obtained using the combination of q and p that
minimizes the MSE. By repeating this procedure for T = 1970:02 and other future months,
we can obtain the PLS-CV forecasts for 1971:01 up to 2019:12.

For each forecasting method applied to each of the 144 economic variables, we compute
the mean squared errors (MSE) by comparing {y(12m)

T+12 }2018:12T=1970:01 and {ŷ(12m)
T+12|T}2018:12T=1970:01. The

results are presented in Tables 11 and 12. The entries are the percentage R2
OS, which is

100× [1−RMSE(method)] = 100×
[
1− MSE(method)

MSE(by mean)

]
,

where the relative mean squared error (RMSE) of a forecasting method is the method's MSE
relative to that of a forecast based on a naïve historical mean of the target variable.

Table 11 displays the R2
OS's from di�erent forecasting models for the eight variables on

which the analysis of Stock and Watson (2002b) focuses. Table 12 reports the forecasting
results for the whole 144 target variables. To save space, we categorize the 144 variables into
eight di�erent groups and report the median percentage R2

OS for each group. Tables 11 and
12 reveal some interesting results. First, consistent with our simulation results, incorporating
more than one PLS factors deteriorates forecasting power signi�cantly. For some variables,
incorporating even the third PLS factor yields worse forecasting performance than a naïve
forecast based on the historical mean of the target variable; for example, Personal Income.
Some target variables show improvement when we use more than PLS factors; for example,
Producer Price Index. However, even for such cases, the predictive improvement is marginal
and the regressions with only one PLS factor (PLS1) still often produce better forecasting
results.

Second, the PLS-CV forecast does not dominate the PLS1 forecast. Rather, the PLS-CV
forecasts are very often dominated by the PLS1 forecast. This result is again consistent with
our simulation results. Third, the PLS-BIC forecast shows signi�cantly worse performance.
Even the forecasts based on a historical mean strictly dominates the PLS-BIC forecast in
many cases. This is not surprising, because the BIC method chooses the number of PLS
factors that maximizes the in-sample �t. Therefore, the number of PLS factors that explains
the in-sample movements very well does not necessarily produce better forecasts. As the
two tables con�rm, the PLS forecasts obtained using the number of factors estimated by the
BIC method actually poorly performs in the data. Finally, the PLS1 regression outperforms
other alternative regression methods. Sometimes the PLS1 regression does not produce the
best forecasting results. However, for such cases, the performances of the best forecasts and
the PLS1 forecast are very similar.

5 Conclusion

This paper has considered the PLS regression to forecast a single target variable using many
predictors. Asymptotic and �nite-sample properties of the PLS factors are derived. Our main
�ndings from our asymptotic analysis are the following. First, the number of the necessary
PLS factors for the asymptotically optimal forecasting crucially depends on the covariance
structure of the common factors in predictor variables. Previous studies routinely assume

32



that all of the factors have distinct asymptotic variances. However, our results indicate that
the asymptotical optimal number of the PLS factors for forecasting is determined by the
number of distinct asymptotic variances of the common factors. If all factors have the same
asymptotic variances, the optimal number of PLS factor is one. Second, the regression with
more than the total number of factors could substantially poor forecasting results.

The main �ndings from our simulation exercises are the following. First, use of more
than the asymptotically optimal number of PLS factors generally reduces forecasting power
of the PLS factors. Second, the actual optimal number of PLS factors is often smaller than
the asymptotically optimal number, unless unrealistically large data are used. Third, the
�rst PLS factor contains the most predictive information about the target variable in �nite
samples. The additional explanatory power that can be obtained by the second or more
PLS factors is not substantial. Fourth and �nally, our simulation results indicate that the
regression with the number of PLS factors determined by some cross-validation methods can
dramatically increase forecasting power, when some predictor variables have strong direct
power for the target variable.
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Appendix

Appendix A: NIPLS algorithm

Let P̂ 1:q = (p̂1, ..., p̂q) be the T×q matrix of the �rst q PLS factors from the NIPLS algorithm.

Set X(1) =X, α̂1 =X
(1)′y, and p̂1 =X

(1)α̂1. For j = 2, ..., q, we iteratively create

ψ̂
(j−1)

=X(j−1)′p̂j−1(p̂
′
j−1p̂j−1)

−1;

X(j) =X(j−1) − p̂j−1ψ̂
(j−1)′;

α̂j =X
(j)′y;

p̂j =X
(j)α̂j.

By construction, the PLS factor vectors p̂j are mutually orthogonal. For forecasting yT + 2,

the values of the PLS factors at time T + 1 needs to be predicted. Let δ̂1:q be the OLS

estimator from a regression of y on P̂ 1:q; and let x
(1)
·T+1 = x·T+1, p̂1,T+1 = x

(1)
·T+1

′α̂1, and

x
(j)
•T+1 = x

(j−1)
•T+1 − ψ̂

(j)
p̂j−1,T+1;p̂j,T+1 = x

(j)
•T+1

′α̂j.

Then, the PLS forecast of yT+2 using the �rst q PLS factors is ŷPLS
T+2|q = δ̂

′
1:qp̂1:q,T+1, where

p̂1:q,T+1 = (p̂1,T+1, ..., p̂q,T+1)
′.

Appendix B: Notation and Preliminary Lemmas

All of the asymptotic results in this appendix are obtained as N, T → ∞ jointly. We use
some additional notation. First, the vector notation 1l denotes an l× 1 vector of ones, while
I l denotes an l × l identity matrix. For the matrices, A1, ... , Al, that are any size,

Diag(A1,A2, ...,Al) =


A1 0 ... 0
0 A2 ... 0
: : :
0 0 ... Al

 ,

where the �0� matrices are conformable zero matrices. Notice that Diag(A1, ...Al) is not
a square matrix unless all of the matrices A1, ... , Al are square matrices. We use the
more common notation diag(A1, ...Al) if all of A1, ... ,Al are square matrices or scalars.
Finally, n denotes some increasing integer functions of N and/or T .

The following lemmas are useful to prove the theorems in this paper.

Lemma B.1 (Theorem 2 of Yu, Wang, and Samworth (2015): Let B and A ∈
Rl×l be symmetric matrices. Choose two integers a and b such that 1 ≤ a ≤ b ≤ l. Assume
that

min{λa−1(A)− λa(A), λb(A)− λb+1(A)} > 0,

where we set λ0(A) = ∞ and λl+1(A) = −∞. Let d = b − a + 1. Then, there exists an
orthonormal matrix OB ∈ Rd×d such that
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∥∥Ξ(B|a : b)OB −Ξ(A|a : b)
∥∥
F
≤

23/2min
{
d1/2 ∥B −A∥2 , ∥B −A∥F

}
min{λa−1(A)− λa(A), λb(A)− λb+1(A)}

.

Remarks on Lemma B.1: (1) Let B and A be l × l symmetric random matrices,
where l is a �xed positive integer or an increasing integer function of n. Suppose that
p limm→∞ λ1(A) = p limm→∞ λ2(A) > p limm→∞ λ3(A), and that ∥B −A∥2 = Op(n

−ς). If
we choose a = 1 and b = 2 for the above lemma, we can obtain the following result:

∥∥Ξ(B|1 : 2)O2×2 −Ξ(A|1 : 2)
∥∥
F
≤ 22 ∥B −A∥2

min{λ0(A)− λ1(A), λ2(A)− λ3(A)}

=
4 ∥B −A∥2

λ2(A)− λ3(A)
= Op(n

−ς),

for some orthonormal matrix O2×2 ∈ R2×2.
(2) An important implication of the lemma is that when some eigenvalues of a random

matrix have the same probability limits, the eigenvectors corresponding to the eigenvalues
are asymptotically unique up to an orthonormal transformation. The lemma explains why
the PLS method cannot identify what individual factors in f (j)t are correlated or uncorre-
lated with the target variable.

Lemma B.2: Let A and B be l × l invertible matrices. Then,

B−1 −A−1 = B−1 (A−B)A−1.

Lemma B.3: LetB andA be l×l symmetric matrices, where l is a �xed positive integer
or an increasing integer function of n. Suppose that ∥B −A∥2 = Op(n

−ς). Then, for all
h = 1, ..., l, λh(B) = λh(A) +Op(n

−ς).

Proof: Using Corollary 4.10 of Stewart and Sun (1990, p. 203), we have

|λh(B)− λh(A)| ≤ max {|λ1(B −A)| , |λl(B −A)|} = ∥B −A∥2 (Q.E.D.)

Lemma B.4: Let B and A be l × l symmetric random matrices, where l is a �xed
positive integer or an increasing integer function of n. De�ne �xed integers K and k(j)
(j = 0, 1, ..., J) such that k(0) = 0 and ΣJ

j=1k(j) = K. Let ks(j) = Σj
h=1k(h). Assume that

λh(A) = σ2
j + Op(n

−ς) for h = ks(j − 1) + 1, ... , ks(j) and σ2
1 > σ2

2 > ... > σ2
J . Let Ξ

A
(j) =

Ξ(A|ks(j − 1) + 1 : ks(j)); and de�ne ΞB
(j) similarly for B = A + C. Suppose that ∥C∥2

= Op(n
−ς). Then, for each j = 1, ..., J , there exists a k(j) × k(j) matrix OB

jj such that∥∥ΞB
(j)O

B
jj −ΞA

(j)

∥∥
F
= Op(n

−ς).

Proof: Let a = ks(j−1)+1 and b = ks(j), such that b−a+1 = k(j). Let a′ = ks(j−1)
and b′ = ks(j) + 1. Then, by Lemma B.1,
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∥∥ΞB
(j)O

B
jj −ΞA

(j)

∥∥
F
≤ 23/2min{(k(j))1/2 ∥C∥2 , ∥C∥F}

min{λa′(A)− λa(A), λb(A)− λb′(A)}

≤ 23/2(k(j))1/2 ∥C∥2
min{λa′(A)− λa(A), λb(A)− λb′(A)}

=
23/2(k(j))1/2 ∥C∥2

min{σ2
j−1 − σ2

j +Op(n−ς), σ2
j − σ2

j+1 +Op(n−ς)}
= Op(n

−ς),

which completes the proof. Q.E.D

Lemma B.5: Let B and A be l1 × l2 random matrices, where l2 is a �xed positive
integer and l1 is a �xed positive integers or an increasing integer function of n. Assume that
∥B −A∥F = Op(n

−ς), and that p limm→∞A
′A is �nite and invertible. Then,

∥P(B)−P(A)∥F = Op(n
−ς); ∥Q(B)−Q(A)∥F = Op(n

−ς).

Proof: Let C = (B−A)′A+A′(B−A)+ (B−A)′(B−A) so that B′B = A′A + C.
Observe that ∥C∥F = Op(n

−ς). Thus, p limm→∞B
′B is also �nite and invertible. Therefore,

by Lemma B.2,∥∥(B′B)−1 − (A′A)−1
∥∥
F
≤
∥∥(B′B)−1

∥∥
F

∥∥(A′A)−1
∥∥
F
∥C∥F = Op(n

−ς).

Now, observe that

P(B)−P(A) = A[(B′B)−1 − (A′A)−1]A+ (B −A)(B′B)−1A′

+A(B′B)−1(B −A)′ + (B −A)(B′B)−1(B −A)′

≡ I + II + III + IV .

Here, ∥I∥F ≤ ∥A∥F ∥(B′B)−1 − (A′A)−1∥F ∥A′∥F = Op(n
−ς). Similarly, we can show

∥II∥F = Op(n
−ς); ∥III∥F = Op(n

−ς); and ∥IV ∥F = Op(n
−2ς). Thus, ∥P(B)−P(A)∥F ≤

∥I∥F + ∥II∥F + ∥III∥F + ∥IV ∥F = Op(n
−ς). In addition, ∥Q(B)−Q(A)∥F = Op(n

−ς),
because Q(B)−Q(A) = P(A)−P(B). Q.E.D.

Appendix C: Proofs of Theorems

Lemma C.1: De�ne the following orthonormal matrix:

OΩ
F =

(
OΩF

(1) , ...,O
ΩF

(J)

)
=


OΩF

11 0k(1)×k(2) ... 0k(1)×k(J)

0k(2)×k(1) OΩF
22 ... 0k(2)×k(J)

: : :

0k(J)×k(1) 0k(J)×k(2) ... OΩF
JJ


K×K

=Diag(OΩF
11 , ...,OΩF

JJ ),
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where OΩF

(j) is a K × k(j) matrix and OΩF
jj is a k(j) × k(j) orthonormal matrix for each

j = 1, ..., J . Then, OΩF = Ξ(ΩF |1 : K).

Proof: The desired result holds because OΩF ′OΩF = IK ; ΩFO
ΩF = OΩFΩF . Q.E.D.

Remark on Lemma C.1: The matrix OΩF is not unique because the OΩF
jj matrices

could be any orthonormal matrices.

Lemma C.2: Under (A.2) � (A.4),

(i)
∥∥∥Ω̂F −ΩF

∥∥∥
F
= Op(T

−γ);
∥∥∥Ω̂Φ − IK

∥∥∥
F
= Op(N

−γ);

(ii) λh(Ω̂F ) = σ2
j +Op(T

−γ); λq(Ω̂Φ) = 1 +Op(N
−γ),

where j = 1, ... , J , h = ks(j − 1) + 1, ks(j − 1) + 2, ... , ks(j), and q = 1, 2, ... , K.

Proof: Part (i) holds by (A.4). Observe that with (i),∥∥∥Ω̂F −ΩF

∥∥∥
2
≤
∥∥∥Ω̂F −ΩF

∥∥∥
F
= Op(T

−γ);∥∥∥Ω̂Φ − IK
∥∥∥
2
≤
∥∥∥Ω̂Φ − IK

∥∥∥
F
= Op(N

−γ).

Thus, (ii) holds by Lemma B.3. Q.E.D.

Lemma C.3: Under (A.1) and (A.6),

(i)
∥∥(NT )−1/2F ′E

∥∥
F
= Op(1);

(ii)
∥∥(NT )−1/2Φ′E′∥∥

F
= Op(1);

(iii)
∥∥(NT )−1/2Φ′E′F

∥∥
F
= Op(1);

(iv)
∥∥(NT )−1/2E

∥∥
F
= Op(1) > 0;

(v) m1/2 ∥(NT )−1E′E∥F = Op(1) > 0.

Proof: The part (i) holds by (A.6) because

E
(
(NT )−1 ∥F ′E∥2F

)
= E

(
(NT )−1trace(F ′EE′F )

)
= E

(
(NT )−1trace

[
ΣN

i=1

(
ΣT

t=1f •teit
) (

ΣT
t=1f •teit

)′])
= E

(
(NT )−1ΣN

i=1trace
[(
ΣT

t=1f •teit
) (

ΣT
t=1f •teit

)′])
= E

(
N−1ΣN

i=1

∥∥T−1/2ΣT
t=1f •teit

∥∥2
2

)
< c.
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Similarly, (ii) holds because

E
(
(NT )−1 ∥Φ′E′∥2F

)
= E

(
T−1ΣT

t=1

∥∥N−1/2ΣN
i=1ϕ•ieit

∥∥2
2

)
< c.

The part (iii) holds because

E
(
(NT )−1 ∥F ′EΦ∥2F

)
= N−1ΣN

i=1E
(∥∥T−1/2ΣT

t=1f •tϕ
′
•ieit
∥∥2
F

)
≤ N−1ΣN

i=1E
(∥∥T−1/2ΣT

t=1f •teit
∥∥2
2
∥ϕ•i∥

2
2

)
= N−1ΣN

i=1E
(∥∥T−1/2ΣT

t=1f •teit
∥∥2
2

)
E
(
∥ϕ•i∥22

)
< c2.

For (iv), observe that since rank(E) ≤ min{N, T} = m, λh(E
′E) = 0 for all h > m. By this

fact, ∥∥(NT )−1/2E
∥∥2
F
= trace

(
(NT )−1E′E

)
= Σm

h=1λh

(
(NT )−1E′E

)
= m−1Σm

h=1λh

(
M−1E′E

)
≤ m−1 ×

(
m× λ1

(
M−1E′E

))
= λ1

(
M−1E′E

)
;

∥∥(NT )−1/2E
∥∥2
F
= m−1Σm

h=1λh

(
M−1/2E′E

)
≥ m−1

(
mc × λmc

(
M−1/2E′E

))
= (mc/m)× λmc

(
M−1/2E′E

)
= (mc/m)(c+ op(1)).

These two results and (A.5) imply (iv). Finally, letting A = M−1E′E, we can obtain (iv)
because

m1/2
∥∥(NT )−1E′E

∥∥
F
= m1/2

[
m−2 × trace(AA)

]1/2
= m1/2

[
m−2Σm

h=1 (λh (A))2
]1/2

≤ m1/2
[
m−2m× (λ1 (A))2

]1/2
= λ1 (A) ;

m1/2
∥∥(NT )−1E′E

∥∥
F
= m1/2

[
m−2 × trace (AA)

]1/2
=
[
m−1Σm

h=1 (λh (AA))2
]1/2

≥
[
(mc/m)× (λmc (A))2

]1/2
≥ (mc/m)1/2 (c+ op(1))

1/2.

This completes the proof. Q.E.D.

Lemma C.4: Let Φ̃ = Φ + E′F (F ′F )−1 and Ω̃Φ = N−1Φ̃
′
Φ̃. Then, under (A.1) �

(A.6),

(i)
∥∥∥N−1/2(Φ̃−Φ)

∥∥∥
F
= Op(T

−1/2);
∥∥∥(Ω̃Φ − IK)

∥∥∥
F
= Op(m

−γ);

(ii)
∣∣∣λh(Ω̃Φ)− 1

∣∣∣ = Op(m
−γ), for all h = 1, 2, ..., K;
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(iii)
∥∥∥Ω̃1/2

Φ − IK
∥∥∥
F
= Op(m

−γ).

Proof: The �rst part of (i) holds by Lemma C.3 because∥∥∥N−1/2(Φ̃−Φ)
∥∥∥
F
≤ T−1/2

∥∥(NT )−1/2E′F
∥∥
F

∥∥∥(T−1F ′F
)−1
∥∥∥
F
= Op(T

−1/2).

For the second part of (ii), let

A =
1

N1/2T 1/2

Φ′E′F

N1/2T 1/2

(
F ′F

T

)−1

; B =
1

T

(
F ′F

T

)−1
F ′E

N1/2T 1/2

E′F

N1/2T 1/2

(
F ′F

T

)−1

.

By Lemma C.3,

∥A∥F = Op((TN)−1/2) = Op((mM)−1/2); ∥B∥F = Op(T
−1).

Observe that Ω̃Φ − IK = Ω̂Φ − IK +A +A′ +B, and that
∥∥∥Ω̂Φ − IK

∥∥∥
F
= Op(N

−γ) by

(A.4). Thus, we have the second part of (ii) because∥∥∥Ω̃Φ − IK
∥∥∥
F
≤
∥∥∥Ω̂Φ − IK

∥∥∥
F
+ 2 ∥A∥F + ∥B∥F ≤ Op(m

−γ).

Part (ii) holds by the second part of (i) and Lemma B.3. Finally, let Λ̃ = diag(λ̃1, ..., λ̃K)

= Λ(Ω̃Φ|1 : K); and Ξ̃ = Ξ(Ω̃Φ|1 : K). By (ii), λ̃
1/2
h − 1 = (λ̃h − 1)/(λ̃

1/2
h + 1) = Op(m

−γ),

which implies
∥∥∥Λ̃1/2 − IK

∥∥∥
F
= Op(m

−γ). Thus, (iii) holds because

∥∥∥Ω̃1/2

Φ − IK
∥∥∥
F
=
∥∥∥Ξ̃(Λ̃

1/2 − IK)Ξ̃
′
∥∥∥
F
=
∥∥∥Ξ̃∥∥∥2

F

∥∥∥Λ̃1/2 − IK
∥∥∥
F
= Op(m

−γ).

This completes the proof. Q.E.D.

Some matrices are useful for the proofs of the following lemmas and theorem. Using the
matrix Φ̃ de�ned in Lemma C.4, we can show that X and SNT are of the following forms:

X

N1/2T 1/2
=

F

T 1/2

Φ̃
′

N1/2
+

Q(F )E

N1/2T 1/2
; SNT =

X ′X

NT
= ZNT +

E′Q(F )E

NT
,

where ZNT = (N−1/2Φ̃)Ω̂F (N
−1/2Φ̃

′
). We de�ne the following matrices:

MNT = Ω̃
1/2

Φ Ω̂F Ω̃
1/2

Φ ; ΞZNT
H = N−1/2Φ̃Ω̃

−1/2
Φ Ξ(MNT |1 : K)

where Ω̃Φ = N−1Φ̃
′
Φ̃.

Lemma C.5: Λ(MNT |1 : K) = Λ(ZNT |1 : K) and ΞZNT
H = Ξ(ZNT |1 : K).
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Proof: We can easily show

ZNTΞ
ZNT
H =

[
N−1/2Φ̃Ω̃

−1/2
Φ

˜Omega
1/2

Φ Ω̂FN
−1/2Φ̃

′]
N−1/2Φ̃Ω̃

−1/2

Φ Ξ(MNT |1 : K)

= N−1/2Φ̃Ω̃
−1/2

Φ MNTΞ(MNT |1 : K)

= N−1/2Φ̃Ω̃
−1/2

Φ Ξ(MNT |1 : K)Λ(MNT |1 : K)

= ΞZNT
H Λ(MNT |1 : K)

This completes the proof. Q.E.D.

Lemma C.6: Under (A.1) � (A.6),

∥MNT −ΩF ∥F = Op(m
−γ); λh (ZNT ) = λh(MNT ) = σ2

j +Op(m
−γ),

for h = ks(j − 1) + 1, ... , ks(j) and j = 1, ..., J .

Proof: Observe that by Lemma C.4 and (A.5),∥∥∥Ω̃1/2

Φ Ω̂F −ΩF

∥∥∥
F
≤
∥∥∥Ω̃1/2

Φ − IK
∥∥∥
F
∥ΩF ∥F +

∥∥∥Ω̂F −ΩF

∥∥∥
F

+
∥∥∥Ω̃1/2

Φ − IK
∥∥∥
F

∥∥∥Ω̂F −ΩF

∥∥∥
F
= Op(m

−γ).

With this, we can obtain the �rst result:

∥MNT −ΩF ∥F =
∥∥∥Ω̃1/2

Φ Ω̂F Ω̃
1/2

Φ −ΩF

∥∥∥
F

=
∥∥∥Ω̃1/2

Φ Ω̂F Ω̃
1/2

Φ −ΩF Ω̃
1/2

Φ +ΩF Ω̃
1/2

Φ −ΩF

∥∥∥
F

≤
∥∥∥Ω̃1/2

Φ Ω̂F −ΩF

∥∥∥
F

∥∥∥Ω̃1/2

Φ

∥∥∥
F
+ ∥ΩF ∥F

∥∥∥Ω̃1/2

Φ − IK
∥∥∥
F

= Op(m
−γ).

Finally, because λh (ZNT ) = λh(MNT ) for all h = 1, ..., K, we can obtain the second result
by the �rst result and Lemma B.3. Q.E.D.

Lemma C.7: De�ne ΞMNT

(j) = Ξ(MNT |ks(j−1)+1 : ks(j)). Then, for each j = 1, ..., D,

there exists a k(j)× k(j) orthonormal matrix OMNT
jj such that∥∥∥ΞMNT

(j) OMNT
jj −OΩF

(j)

∥∥∥
F
= Op(m

−γ).

Proof: Because ∥MNT −ΩF ∥2 ≤ ∥MNT −ΩF ∥F = Op(m
−γ), we can obtain the result

by Lemma B.4 and Lemma C.6. Q.E.D.

Lemma C.8: Under (A.1) � (A.6),∥∥M−1E′Q(F )E
∥∥
2
= Op(1);

∥∥(NT )−1E′Q(F )E
∥∥
F
= Op(m

−1/2).
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Proof: Because E′Q(F )E and E′P(F )E are positive semi-de�nite matrices,

λ1

(
M−1E′Q(F )E

)
≤ λ1

(
M−1E′Q(F )E +M−1E′P(F )E

)
= λ1

(
M−1E′E

)
= Op(1),

where the �rst inequality results from Lemma A.6 of Ahn and Horenstein (2013) and the
last equality is due to (A.5). Thus, the �rst part holds. The second result holds because∥∥(NT )−1E′Q(F )E

∥∥
F
= m−1

∥∥M−1E′Q(F )E
∥∥
F

= m−1
[
Σm

h=1

(
λh

(
M−1E′Q(F )E

))2]1/2
≤ m−1

[
m
(
λ1

(
M−1E′E

))2]1/2
= Op(m

−1/2).

This completes the proof. Q.E.D.

Lemma C.9: Under (A.1) � (A.6),

(i) ∥SNT −ZNT∥2 = Op(m
−1); ∥SNT −ZNT∥F = Op(m

−1/2);

(ii) λh(SNT ) = σ2
j +Op(m

−γ) for h = ks(j − 1) + 1, ..., ks(j) and j = 1, ... , J ;

(iii) λq(SNT ) = Op(m
−1), for q = K + 1, ...,m.

Proof: The results in (i) immediately follow from Lemma C.8. By Lemma B.3 and
(i), λq(SNT ) = λq(ZNT ) + Op(m

−1) for all q = 1, 2, ... , K. In addition, by Lemma C.6,
λq(ZNT ) = λq(MNT ) = λq(ΩF ) +Op(m

−γ). Thus, (ii) holds because

λh(SNT ) = λh(ΩF ) +Op(m
−γ) +Op(m

−1) = σ2
j +Op(m

−γ).

For q ≥ K + 1, (iii) holds because λK+1(ZNT ) = 0. Q.E.D.

Lemma C.10: Under (A.1) � (A.6), for each j = 1, ..., J , there exists a k(j) × k(j)

orthonormal matrix OSNT
jj such that

∥∥∥ΞSNT

(j) O
SNT
jj −ΞZNT

(j)

∥∥∥
F
= Op(m

−1).

Proof: The desired result is obtained by Lemma C.9 and Lemma B.4. Q.E.D.

Lemma C.11: Let O∗
jj = O

ΩF
jj O

MNT
jj

′OSNT
jj

′, where j = 1, ..., J , and OΩF
jj , OMNT

jj , and

OSNT
jj are de�ned in Lemmas C.1, C.7, and C.10, respectively. Under (A.1) � (A.6), for

j = 1, ..., J , ∥∥∥ΞSNT

(j) −N−1/2Φ(j)O
∗
jj

∥∥∥
F
= Op(m

−γ).
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Proof: Observe that

ΞZNT

(j) = N−1/2Φ̃Ω̃
−1/2

Φ ΞMNT

(j)

=
(
N−1/2Φ̃+N−1/2Φ̃

(
Ω̃

−1/2

Φ − IK
))

×
(
OΩF

(j) O
MNT
jj

′ +
(
ΞMNT

(j) −OΩF

(j) O
MNT
jj

′
))

= N−1/2Φ̃OΩF

(j) O
MNT
jj

′ +N−1/2Φ̃
(
Ω̃

−1/2

Φ − IK
)
OΩF

(j) O
MNT
jj

′

+N−1/2Φ̃
(
ΞMNT

(j) −OΩF

(j) O
MNT
jj

′
)

+N−1/2Φ̃
(
Ω̃

−1/2

Φ − IK
)(

ΞMNT

(j) −OΩF

(j) O
MNT
jj

′
)

= N−1/2ΦOΩF

(j) O
MNT
jj

′ +N−1/2
(
Φ̃−Φ

)
OΩF

(j) O
MNT
jj

′

+N−1/2Φ̃
(
Ω̃

−1/2

Φ − IK
)
OΩF

(j) O
MNT
jj

′ +N−1/2Φ̃
(
ΞMNT

(j) −OΩF

(j) O
MNT
jj

′
)

+N−1/2Φ̃
(
Ω̃

−1/2

Φ − IK
)(

ΞMNT

(j) −OΩF

(j) O
MNT
jj

′
)
.

Thus, by Lemma C.4 and C.7, we can have∥∥∥ΞZNT

(j) −N−1/2ΦOΩF

(j) O
MNT
jj

′
∥∥∥
F

≤
∥∥∥N−1/2

(
Φ̃−Φ

)∥∥∥∥∥∥OΩF

(j) O
MNT
jj

′
∥∥∥
F

+
∥∥∥N−1/2Φ̃

∥∥∥
F

∥∥∥Ω̃−1/2

Φ − IK
∥∥∥
F

∥∥∥OΩF

(j) O
MNT
jj

′
∥∥∥
F

+
∥∥∥N−1/2Φ̃

∥∥∥
F

∥∥∥ΞMNT

(j) −OΩF

(j) O
MNT
jj

′
∥∥∥
F

+
∥∥∥N−1/2Φ̃

∥∥∥
F

∥∥∥Ω̃−1/2

Φ − IK
∥∥∥
F

∥∥∥ΞMNT

(j) −OΩF

(j) O
MNT
jj

′
∥∥∥
F

= Op(m
−γ).

With this result and Lemma C.11, we can obtain the desired result because∥∥∥ΞSNT

(j) −N−1/2ΦOΩF

(j) O
MNT
jj

′OSNT
jj

′
∥∥∥
F

=
∥∥∥ΞSNT

(j) −ΞZNT

(j) OSNT
jj

′ +ΞZNT

(j) OSNT
jj

′ −N−1/2ΦOΩF

(j) O
MNT
jj

′OSNT
jj

′
∥∥∥
F

≤
∥∥∥ΞSNT

(j) −ΞZNT

(j) OSNT
jj

′
∥∥∥
F
+
∥∥∥ΞZNT

(j) −N−1/2ΦOΩF

(j) O
MNT
jj

′
∥∥∥
F

∥∥OSNT
jj

′∥∥
F

= Op(m
−γ).

This completes the proof. Q.E.D.

Lemma C.12: Under (A.1) � (A.7),∥∥(NT )−1/2E′Q(F )u
∥∥
2
= Op(1);

∥∥∥N−1T−1/2Φ̃
′
E′Q(F )u

∥∥∥
2
= Op(m

−1/2).
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Proof: By (A.7) and Lemma C.4,∥∥∥∥E′Q(F )u

N1/2T 1/2

∥∥∥∥
F

≤
∥∥∥∥ E′u

N1/2T 1/2

∥∥∥∥
F

+
1

T 1/2

∥∥∥∥ E′F

N1/2T 1/2

∥∥∥∥
F

∥∥∥∥∥
(
F ′F

T

)−1
∥∥∥∥∥
F

∥∥∥∥F ′u

T 1/2

∥∥∥∥
F

= Op(1) +Op(T
−1/2) = Op(1).

In addition,∥∥∥∥∥Φ̃
′
E′Q(F )u

NT 1/2

∥∥∥∥∥
F

=

∥∥∥∥Φ′E′u

NT 1/2

∥∥∥∥
F

+
1

(NT )1/2

∥∥∥∥ Φ′E′F

(NT )1/2

∥∥∥∥
F

∥∥∥∥∥
(
F ′F

T

)−1
∥∥∥∥∥
F

∥∥∥∥F ′u

T 1/2

∥∥∥∥
F

+
1

T 1/2

∥∥∥∥∥
(
F ′F

T

)−1
∥∥∥∥∥
F

∥∥∥∥F ′EE′u

NT 3/2

∥∥∥∥
F

+
1

T

∥∥∥∥∥
(
F ′F

T

)−1
F ′EE′F

NT

∥∥∥∥∥
F

∥∥∥∥∥
(
F ′F

T

)−1
F ′u

T 1/2

∥∥∥∥∥
F

= Op(N
−1/2) +Op((NT )−1/2) +Op(T

−1/2) +Op(T
−1) = Op(m

−1/2).

This completes the proof because the Frobenius norms of E′Q(F )u and Φ̃
′
E′Q(F )u are

equal to their spectral norms. Q.E.D.

Lemma C.13: Under (A.1) � (A.7),

(i)
∥∥T−1F ′

(j)y − σ2
jβ(j)

∥∥
2
= Op(T

−γ), for j = 1, ..., R;

(ii)
∥∥T−1F ′

(j)y
∥∥
2
= Op(T

−γ), for j = R + 1, ..., J ;

(iii)
∥∥(NT )−1/2E′y

∥∥
2
= Op(1).

Proof: Part (i) holds because, for j ≤ R,∥∥∥∥∥F
′
(j)y

T
− σ2

jβ(j)

∥∥∥∥∥
F

=

∥∥∥∥∥ΣR
j′=1

F ′
(j)F (j′)

T
β(j′) +

F ′
(j)u

T
− σ2

jβ(j)

∥∥∥∥∥
F

≤

∥∥∥∥∥F
′
(j)F (j′)

T
− σ2

jIk(j)

∥∥∥∥∥
F

∥∥β(j′)

∥∥
F
+ ΣR

j′=1,j′ ̸=j

∥∥∥∥∥F
′
(j)F (j′)

T
β(j′)

∥∥∥∥∥
F

+

∥∥∥∥∥F
′
(j)u

T

∥∥∥∥∥
F

= Op(T
−γ) +Op(T

−γ) +Op(T
−1/2) = Op(T

−γ).
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Similarly, (ii) holds because, for j ≥ R + 1,∥∥∥∥∥F
′
(j)y

T

∥∥∥∥∥
F

≤ ΣR
j′=1

∥∥∥∥∥F
′
(j)F (j′)

T

∥∥∥∥∥
F

∥∥β(j′)

∥∥
F
+

∥∥∥∥∥F
′
(j)u

T

∥∥∥∥∥
F

= Op(T
−γ) +Op(T

−1/2) = Op(T
−γ).

Finally, (iii) holds because, by (A.7) and Lemma C.3,∥∥∥∥ E′y

(NT )1/2

∥∥∥∥
F

= ΣR
j=1

∥∥∥∥ E′F (j)

(NT )1/2

∥∥∥∥
F

∥∥β(j)

∥∥
F
+

∥∥∥∥ E′u

(NT )1/2

∥∥∥∥
F

= Op(1).

This completes the proof. Q.E.D.

Lemma C.14: Under (A.1) � (A.7),
∥∥bNT − ΣR

j=1σ
2
jN

−1/2Φ(j)β(j)

∥∥
2
= Op(T

−γ).

Proof: Observe that

bNT − ΣR
j=1

Φ(j)

N1/2
σ2
jβ(j)

= ΣJ
j=1

Φ(j)

N1/2

F ′
(j)y

T
+

1

T 1/2

E′y

(NT )1/2
− ΣR

j=1

Φ(j)

N1/2
σ2
jβ(j)

= ΣR
j=1

Φ(j)

N1/2

(
F ′

(j)y

T
− σ2

jβ(j)

)
+ ΣJ

j=R+1

Φ(j)

N1/2

F ′
(j)y

T
+

1

T 1/2

E′y

(NT )1/2
.

Thus, by Lemma C.13,∥∥∥∥bNT − ΣR
j=1

Φ(j)

N1/2
σ2
jβ(j)

∥∥∥∥
F

≤ ΣR
j=1

∥∥∥∥Φ(j)

N1/2

∥∥∥∥
F

∥∥∥∥∥F
′
(j)y

T
− σ2

jβ(j)

∥∥∥∥∥
F

+ ΣJ
j=R+1

∥∥∥∥Φ(j)

N1/2

∥∥∥∥
F

∥∥∥∥∥F
′
(j)y

T

∥∥∥∥∥
F

+
1

T 1/2

∥∥∥∥ E′y

(NT )1/2

∥∥∥∥
F

= Op(T
−γ),

completes the proof. Q.E.D.

Lemma C.15: Under (A.1) � (A.7), with the matrix O∗
jj that is de�ned in Lemma C.11,

(i)
∥∥∥cSNT

(j) −O∗
jj

′σ2
jβ(j)

∥∥∥
2
= Op(m

−γ), for j ≤ R;

(ii)
∥∥∥cSNT

(j)

∥∥∥
2
= Op(m

−γ), for j ≥ R + 1
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Proof: For j ≤ R,

cSNT

(j) =

(
Φ(j)

N1/2
O∗

jj +

(
ΞSNT

(j) −
Φ(j)

N1/2
O∗

jj

))′

×
(
ΣR

j′=1σ
2
j′
Φ(j′)

N1/2
β(j′) +

(
bNT − ΣR

j′=1σ
2
j′
Φ(j′)

N1/2
β(j′)

))
= O∗

jj
′ Φ

′
(j)

N1/2

(
ΣR

j′=1

Φ(j′)

N1/2
σ2
j′β(j′)

)
+O∗

jj
′ Φ

′
(j)

N1/2

(
bNT − ΣR

j′=1σ
2
j′
Φ(j′)

N1/2
β(j′)

)
=

(
ΞSNT

(j) −
Φ(j)

N1/2
O∗

jj

)′

ΣR
j′=1σ

2
j′
Φ(j′)

N1/2
β(j′)

+

(
ΞSNT

(j) −
Φ(j)

N1/2
O∗

jj

)′(
bNT − ΣR

j′=1σ
2
j′
Φ(j′)

N1/2
β(j′)

)
.

Applying Lemmas C.11 and C.14 to this result, we can show∥∥∥∥∥cSNT

(j) −O∗
jj

′ Φ
′
(j)

N1/2

(
ΣR

j′=1

Φ(j′)

N1/2
σ2
j′β(j′)

)∥∥∥∥∥
F

≤

∥∥∥∥∥O∗
jj

′ Φ
′
(j)

N1/2

∥∥∥∥∥
F

∥∥∥∥bNT − ΣR
j′=1σ

2
j′
Φ(j′)

N1/2
β(j′)

∥∥∥∥
F

+

∥∥∥∥ΞSNT

(j) −
Φ(j)

N1/2
O∗

jj

∥∥∥∥
F

∥∥∥∥ΣR
j′=1σ

2
j′
Φ(j′)

N1/2
β(j′)

∥∥∥∥
F

+

∥∥∥∥ΞSNT

(j) −
Φ(j)

N1/2
O∗

jj

∥∥∥∥
F

∥∥∥∥bNT − ΣR
j′=1σ

2
j′
Φ(j′)

N1/2
β(j′)

∥∥∥∥
F

= Op(T
−γ) +Op(m

−γ) +Op(T
−γm−γ) = Op(m

−γ).

This implies ∥∥∥∥∥cSNT

(j) −O∗
jj

′ Φ
′
(j)

N1/2

(
ΣR

j′=1

Φ(j′)

N1/2
σ2
j′β(j′)

)∥∥∥∥∥
F

= Op(m
−γ). (C.1)

In addition, we can easily show∥∥∥∥∥Φ
′
(j)

N1/2

(
ΣR

j′=1

Φ(j′)

N1/2
σ2
j′β(j′)

)
−

Φ′
(j)Φ(j)

N1/2
σ2
jβ(j)

∥∥∥∥∥
F

= Op(m
−γ); (C.2)

∥∥∥∥∥Φ
′
(j)Φ(j)

N
σ2
jβ(j) − σ2

jβ(j)

∥∥∥∥∥
F

= Op(m
−γ). (C.3)

47



By (C.1) � (C.3), we can obtain (i) because∥∥∥cSNT

(j) −O∗
jjσ

2
jβ(j)

∥∥∥
F

=
∥∥∥cSNT

(j) −O∗
jjσ

2
jβ(j)

∥∥∥
F

≤

∥∥∥∥∥cSNT

(j) −O∗
jj

′ Φ
′
(j)

N1/2

(
ΣR

j′=1

Φ(j′)

N1/2
σ2
j′β(j′)

)∥∥∥∥∥
F

+
∥∥O∗

jj

∥∥
F

∥∥∥∥∥Φ
′
(j)

N1/2

(
ΣR

j′=1

Φ(j′)

N1/2
σ2
j′β(j′)

)
−

Φ′
(j)Φ(j)

N1/2
σ2
jβ(j)

∥∥∥∥∥
F

+
∥∥O∗

jj

∥∥
F

∥∥∥∥∥Φ
′
(j)Φ(j)

N
σ2
jβ(j) − σ2

jβ(j)

∥∥∥∥∥
F

.

Part (ii) can be shown similarly. Q.E.D.

Lemma C.16: Under 2.2 � 2.2, for j = 1, ..., J ,∥∥∥(NT )−1/2XΞSNT

(j) − T−1/2F (j)O
∗
jj

∥∥∥
F
= Op(m

−γ),

where O∗
jj is de�ned in Lemma C.11.

Proof: By Lemma C.11, we can show∥∥∥∥ X

(NT )1/2
ΞSNT

(j) − X

(NT )1/2
Φ(j)

N1/2
O∗

jj

∥∥∥∥
F

≤
∥∥∥∥ X

(NT )1/2

∥∥∥∥
F

Op(m
−γ) = Op(m

−γ). (C.4)

In addition, we have ∥∥∥∥ X

(NT )1/2
Φ(j)

N1/2
−
F (j)

T 1/2

∥∥∥∥
F

= Op(m
−γ), (C.5)

because∥∥∥∥ X

(NT )1/2
Φ(j)

N1/2
−
F (j)

T 1/2

∥∥∥∥
F

=

∥∥∥∥ FT 1/2

Φ′Φ(j)

N
+

1

N1/2

EΦ(j)

(NT )1/2
−
F (j)

T 1/2

∥∥∥∥
F

=

∥∥∥∥∥−F (j)

T 1/2

(
Ik(j) −

Φ′
(j)Φ(j)

N

)
+ ΣJ

j′=1,j′ ̸=j

F (j′)

T 1/2

Φ′
(j′)Φ(j)

N
+

1

N1/2

EΦH1

(NT )1/2

∥∥∥∥∥
F

≤
∥∥∥∥F (j)

T 1/2

∥∥∥∥
F

∥∥∥∥∥Ik(j) − Φ′
(j)Φ(j)

N

∥∥∥∥∥
F

+ ΣJ
j′=1,j′ ̸=j

∥∥∥∥F (j′)

T 1/2

∥∥∥∥
F

∥∥∥∥∥Φ
′
(j′)Φ(j)

N

∥∥∥∥∥
F

+
1

N1/2

∥∥∥∥ EΦ(j)

(NT )1/2

∥∥∥∥
F

= Op(m
−γ) +Op(m

−γ) +Op(N
−1/2) = Op(m

−γ).
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Finally, we have∥∥∥∥ X

(NT )1/2
ΞSNT

(j) −
F (j)

T 1/2
O∗

jj

∥∥∥∥
F

≤
∥∥∥∥ X

(NT )1/2
ΞSNT

(j) − X

(NT )1/2
Φ(j)

N1/2
O∗

jj

∥∥∥∥
F

+

∥∥∥∥ X

(NT )1/2
Φ(j)

N1/2
−
F (j)

T 1/2

∥∥∥∥
F

∥∥O∗
jj

∥∥
F
,

which, with (C.4) and (C.5) imply the desired result. Q.E.D.

Lemma C.17: LetΞSNT
H = (ΞSNT

(1) , ...,ΞSNT

(J) )=Ξ(SNT |1 : K); S∗
NT =X ′X/(NT );Ξ∗

H =

Ξ(S∗
NT |1 : K); and F̃ = F +EΦ(Φ′Φ)−1. Under (A.1) � (A.8), the following holds.

(i)
∥∥∥Q(ΞSNT

H )−Q(N−1/2Φ̃)
∥∥∥
F
= Op(m

−1);

(ii)
∥∥∥Q(Ξ∗

H)−Q(T−1/2F̃ )
∥∥∥
F
= Op(m

−1).

Proof: Let ΞZNT
H = Ξ(ZNT |1 : K). Observe that Ω̃

−1/2

Φ Ξ(MNT |1 : K) is an invertible

matrix, and that ΞZNT
H = N−1/2Φ̃Ω̃

−1/2

Φ Ξ(MNT |1 : K). Thus,

Q(ΞZNT
H ) = Q(N−1/2Φ̃). (C.6)

By Lemmas A.1 and C.9 and the fact that λK(ZNT ) > 0 and λK+1(ZNT ) = 0, there exists
an orthonormal matrix OSNT such that∥∥ΞSNT

H OSNT −ΞZNT
H

∥∥
F
≤ 23/2K1/2 ∥SNT −ZNT∥2

λK(ZNT )
= Op(m

−1),

where the last equality is due to Lemma C.9. Thus, by Lemma B.5, we have∥∥Q(ΞSNT
H )−Q(ΞZNT

H )
∥∥
F
=
∥∥Q(ΞSNT

H OSNT )−Q(ΞZNT
H )

∥∥
F
= Op(m

−1). (C.7)

which, with (C.6), implies (i). We can show (ii) similarly. It is straightforward to show that

S∗
NT = Z∗

NT + (NT )−1EQ(N−1/2Φ)E′,

where Z∗
NT = (T−1/2F̃ )(N−1Φ′Φ)−1(T−1/2F̃ ). Thus, by the same methods used to show

(C.6) and (C.7), we can show

Q(Ξ(Z∗
NT |1 : K)) = Q(T−1/2F̃ );

∥Q(Ξ∗
HO

∗∗)−Q(Ξ(Z∗
NT |1 : K))∥2 =

∥∥Q(ΞSNT
H OSNT )−Q(ΞZNT

H )
∥∥
2
= Op(m

−1)

for some orthonormal matrix O∗∗. These results imply (ii). Q.E.D.

Lemma C.18: LetHNT = (NT )−1/2ΞSNT
L

′Q(Φ)E′Q(F̃ ), where F̃ is de�ned in Lemma
C.17. Let rNT be an m× 1 random vector with ∥rNT∥2 = Op(1) which is independent of u.
Then, under 2.2 � 2.2, the following holds.
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(i)
∥∥cSNT

L − T−1/2HNTu
∥∥
2
= Op(m

−3/2);

(ii)
∥∥T−1/2HNTu

∥∥
2
= Op(T

−1/2);

(iii)
∥∥T−1/2r′NTHNTu

∥∥
2
= Op((Tm)−1/2).

Proof: Let Ξ∗
L = Ξ(S∗

NT |K + 1 : m), where S∗
NT is de�ned in Lemma C.17. Using the

fact that Ξ∗
LΛ

SNT
L = (NT )−1/2XΞSNT

L and X = F̃Φ′ +EQ(Φ), we can easily show that

cSNT
L − T−1/2HNTu

= ΞSNT
L

′ X ′

(NT )1/2
Q(Ξ∗

H)
y

T 1/2
+ΞSNT

L
′ X ′

(NT )1/2
P(Ξ∗

H)
y

T 1/2
− T−1/2HNTu

= ΞSNT
L

′ X ′

(NT )1/2
Q(Ξ∗

H)
y

T 1/2
− HNTu

T−1/2

= ΞSNT
L

′ X ′

(NT )1/2
Q(F̃ )

y

T 1/2
+ΞSNT

L

X ′

(NT )1/2

(
Q(Ξ∗

H)−Q(F̃ )
) y

T 1/2
− HNTu

T−1/2

=
1

T 1/2
ΞSNT

L
′Q(Φ)

E′

(NT )1/2
Q(F̃ )u− HNTu

T−1/2

− 1

N1/2
ΞSNT

L
′Q(Φ)

E′

(NT )1/2
Q(F̃ )

EΦ

(NT )1/2

(
Φ′Φ

N

)−1

β

+ΞSNT
L

′ X ′

(NT )1/2

(
Q(Ξ∗

H)−Q(F̃ )
) y

T 1/2

= − 1

N1/2
ΞSNT

L
′Q(Φ)

E′

(NT )1/2
Q(F̃ )

EΦ

(NT )1/2

(
Φ′Φ

N

)−1

β

+ΞSNT
L

′ X ′

(NT )1/2

(
Q(Ξ∗

H)−Q(F̃ )
) y

T 1/2

≡ −I + II.

For (i), it is su�cient to show that ∥I∥2 = Op(m
−3/2) and ∥II∥2 = Op(m

−3/2). By (A.5)

and the fact that E′E − E′Q(F̃ )E is positive semi-de�nite and Q(Φ) is idempotent, we
have

∥I∥2 ≤
1

N1/2m

∥∥ΞSNT
L

∥∥
2
∥Q(Φ)∥2

∥∥∥∥ E′

M1/2
Q(F̃ )

E

M1/2

∥∥∥∥
2

∥∥∥∥∥ Φ

N1/2

(
Φ′Φ

N

)−1

β

∥∥∥∥∥
2

≤ 1

N1/2m
× 1× 1×

∥∥∥∥E′E

M

∥∥∥∥
2

×Op(1) ≤ Op(m
−3/2).

By Lemma C.7 and the fact that
∥∥(NT )−1/2XΞSNT

L

∥∥
2
= [λK+1(SNT )]

1/2 = Op(m
−1/2), we

also have
∥II∥2 ≤ Op(m

−1/2)×Op(m
−1)×

∥∥T−1y
∥∥
2
= Op(m

−3/2).
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For (ii), observe that∥∥∥∥∥ E′F̃

N1/2T

∥∥∥∥∥
F

=
1

T 1/2

∥∥∥∥ E′F

(NT )1/2

∥∥∥∥
F

+
1

m1/2
m1/2

∥∥∥∥E′E

NT

∥∥∥∥
F

∥∥∥∥∥ Φ

N1/2

(
Φ′Φ

N

)−1
∥∥∥∥∥
F

= Op(m
−1/2);∥∥∥∥∥ F̃

′
u

T 1/2

∥∥∥∥∥
F

=

∥∥∥∥F ′u

T 1/2

∥∥∥∥
F

+

∥∥∥∥∥
(
Φ′Φ

N

)−1
Φ′

N1/2

∥∥∥∥∥
F

∥∥∥∥ E′u

(NT )1/2

∥∥∥∥
F

= Op(1);∥∥∥∥∥F̃
′
F̃ ′

T
− F ′F

T

∥∥∥∥∥
F

= 2
1

(NT )1/2

∥∥∥∥ F ′EΦ

(TN)1/2

∥∥∥∥
F

∥∥∥∥∥
(
Φ′Φ

N

)−1
∥∥∥∥∥
F

+

∥∥∥∥∥
(
Φ′Φ
N

)−1
Φ′

N1/2

∥∥∥∥∥
2

F

∥∥∥∥E′E

NT

∥∥∥∥
F

= Op(m
−1/2).

With these results, we can show that∥∥∥∥∥E′Q(F̃ )u

N1/2T

∥∥∥∥∥
2

=

∥∥∥∥∥E′Q(F̃ )u

N1/2T

∥∥∥∥∥
F

≤ 1

T 1/2

∥∥∥∥ E′u

(NT )1/2

∥∥∥∥
F

+
1

T 1/2

∥∥∥∥∥ E′F̃

N1/2T

∥∥∥∥∥
F

∥∥∥∥∥∥
(
F̃

′
F̃

T

)−1
∥∥∥∥∥∥
F

∥∥∥∥∥ F̃
′
u

T 1/2

∥∥∥∥∥
F

= Op(T
−1/2)

By this result and the facts that ΞSNT
L

′ΞSNT
L = Im−K and Q(N−1/2Φ) is idempotent, we

can show that (ii) holds because

∥∥T−1/2HNTu
∥∥
2
=
∥∥ΞSNT

L

∥∥
2

∥∥∥∥Q( Φ

N1/2

)∥∥∥∥
2

∥∥∥∥∥E′QT−1/2F̃ )u

N1/2T

∥∥∥∥∥
2

= 1× 1×Op(T
−1/2) = Op(T

−1/2).

For (iii), observe that HNT is a function of E, F and Φ, all of which are independent of u.
That is, H ′

NTrNT and u are independent. Observe also that

∥HNT∥2 ≤ m−1/2
∥∥ΞSNT

L

∥∥
2
∥Q(Φ)∥2

∥∥M−1/2E
∥∥
2

∥∥∥Q(F̃ )
∥∥∥
2

= m−1/2 × 1× 1× (λ1(M
−1EE′))1/2 × 1 = Op(m

−1/2).

By these results, we have

E
(∥∥T−1/2r′NTHNTu

∥∥2
2
|HNT , rNT

)
= T−1/2r′NTHNTE(uu

′)H ′
NTrNT

≤ T−1 ∥rNT∥22 ∥HNT∥22 λ1 (E(uu
′)) = Op((mT )−1),

which implies (iii). Q.E.D.

Proof of Lemma 2.4.1: The parts (i) and (ii) hold by Lemma C.9. The part (iii) holds
by Lemma C.14. The part (iv) holds by Lemma C.11, while the parts (v) and (vi) hold by
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Lemmas C.15. Finally, the parts (vii) � (ix) hold by Lemma C.18. Q.E.D.

Lemma C.19: Under (A.1) � (A.8), for q ≥ 1,

∥vH1(q)∥2 = Op(m
−γ);

∥vH2(q)∥2 = Op(m
−γ);

∥vL(q)∥2 = Op(m
−(q−1)(T−1/2 +m−3/2)).

Proof: By Lemma C.9 , λSNT

ks(j−1)+h = σ2
j + Op(m

−γ), for j = 1, 2, ..., J and h =

1, 2, ..., k(j). Cnosequently, λSNT

ks(j−1)+h − λSNT

ks(j−1)+1 = Op(m
−γ). Observe that

mγ
(
λSNT

ks(j−1)+h − λSNT

ks(j−1)+1

)
= Op(1);

(λSNT

ks(j−1)+h)
q−2 + (λSNT

ks(j−1)+h)
q−3λSNT

ks(j−1)+1

+ ...+ λSNT

ks(j−1)+h(λ
SNT

ks(j−1)+1)
q−3 + (λSNT

ks(j−1)+1)
q−2 = Op(1).

Therefore,

mγ
(
(λSNT

ks(j−1)+h)
q−1 − (λSNT

ks(j−1)+1)
q−1
)

= mγ(λSNT

ks(j−1)+h − λSNT

ks(j−1)+1)Σ
q−2
j′=2(λ

SNT

ks(j−1)+h)
q−j′(λSNT

ks(j−1)+1)
j′

= Op(1)×Op(1) = Op(1)

which implies that
∥∥∥(ΛSNT

(j) )q−1 − (Λ̄
SNT

(j) )q−1
∥∥∥ = Op(m

−γ), where Λ̄
SNT

(j) = µSNT
j Ik(j). With

this result, we can obtain the �rst part of the lemma because

∥vH1(q)∥2 ≤ ΣR
j=1

∥∥∥ΞSNT

(j)

∥∥∥
2

∥∥∥(ΛSNT

(j) )q−1 − (Λ̄
SNT

(j) )q−1
∥∥∥
2

∥∥∥cSNT

(j)

∥∥∥
2
= Op(m

−γ).

For j ≥ R + 1,
∥∥∥cSNT

(j)

∥∥∥ = Op(m
−γ) by Lemma C.15. Therefore, we have the second part of

the lemma because

∥vH2(q)∥2 ≤ ΣJ
j=R+1

∥∥∥ΞSNT

(j)

∥∥∥
2

∥∥∥(ΛSNT

(j) )q−1
∥∥∥
2

∥∥∥cSNT

(j)

∥∥∥
2
= Op(m

−γ).

Finally, by Lemma C.18, we have

∥vL(q)∥2 =
∥∥ΞSNT

L (ΛSNT
L )q−1cSNT

L

∥∥
2

≤
∥∥ΞSNT

L

∥∥
2

∥∥(ΛSNT
L )q−1

∥∥
2

∥∥cSNT
L

∥∥
2
≤ Op(m

−(q−1))Op(T
−1/2 +m−3/2)

which implies the last part of the lemma. Q.E.D.

Corollary C.19: Under (A.1) � (A.8), for q ≥ 1,

∥V H1(q)∥F = Op(m
−γ); ∥V H2(q)∥F = Op(m

−γ); ∥V L(q)∥F = Op(T
−1/2 +m−3/2).
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Proof: The results are obtained by Lemma C.19 because

∥V H1(q)∥F ≤ ΣR
j=1 ∥vH1(j)∥2 ;

∥V H2(q)∥F ≤ ΣR
j=1 ∥vH2(j)∥2 ;

∥V L(q)∥F ≤ q × ∥vL(1)∥2 Q.E.D.

Proof of Lemma 2.4.2: The parts (ii) � (iii) hold by Lemma C.19. For (i), observe
that for each j = 1, ..., R,

ΞSNT

(j) c
SNT

(j)

=

(
Φ(j)

N1/2
O∗

jj +

(
ΞSNT

(j) −
Φ(j)

N1/2
O∗

jj

))(
O∗

jj
′σ2

jβ(j) +
(
cSNT

(j) −O∗
jj

′σ2
jβ(j)

))
=

Φ(j)

N1/2
σ2
jβ(j) +

(
ΞSNT

(j) −
Φ(j)

N1/2
O∗

jj

)
O∗

jj
′σ2

jβ(j)

+
Φ(j)

N1/2
O∗

jj

(
cSNT

(j) −O∗
jj

′σ2
jβ(j)

)
+

(
ΞSNT

(j) −
Φ(j)

N1/2
O∗

jj

)(
cSNT

(j) −O∗
jj

′σ2
jβ(j)

)
.

This result, with Lemmas C.11 and C.15, implies
∥∥∥ΞSNT

(j) c
SNT

(j) − σ2
jN

−1/2Φ(j)β(j)

∥∥∥
F
= Op(m

−γ).

Thus, we have the desired result because

∥V 0 −ΠNTΣR∥F ≤ ΣR
j=1

∥∥∥ΞSNT

(j) c
SNT

(j) − σ2
jN

−1/2Φ(j)β(j)

∥∥∥
F
. Q.E.D.

Proof of Corollary 2.4.2: By Lemma 2.4.2 and Corollary C.19.

Proof of Theorem 1: By Lemma 2.4.1 and Corollary 2.4.2, ∥V L(q)∥F = Op(m
−1/2).

This result and Corollary 2.4.2 implies (i) because∥∥∥ÃPLS

1:q −ΠNTΣRD0(q)
∥∥∥
F

≤ ∥V 0D0(q)−ΠNTΣRD0(q)∥F + ∥V H1(q)∥F + ∥V H2(q)∥F + ∥V L(q)∥F
= Op(m

−γ) +Op(m
−1/2) = Op(m

−1/2).

For (ii), observe that

N−1/2Π′
NTx·T+1

= N−1

β′
(1)Φ

′
(1)

:
β′

(R)Φ
′
(R)

(ΣR
j=1Φ(j)f (j)T+1 + ΣJ

j=R+1Φ(j)f (j)T+1 + e·T+1

)

=

β′
(1)f (1)T+1

:
β′

(R)f (R)T+1

+

Op(N
−γ)

:
Op(N

−γ)

+

 β′
(1)N

−1Φ′
(1)e·T+1

:
β′

(R)N
−1/2Φ′

(R)e·T+1


=

β′
(1)f (1)T+1

:
β′

(R)f (R)T+1

+

Op(N
−γ)

:
Op(N

−γ)

 .
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With this result and part (i), we can show∥∥∥N−1/2Ã
PLS

1:q
′x•T+1 −D0(q)

′ΣRgT+1

∥∥∥
F

≤ Op(N
−γ) +

∥∥∥ÃPLS

1:q −ΠNTΣRD0(q)
∥∥∥
F

∥∥N−1/2x•T+1

∥∥
F
= Op(m

−γ). Q.E.D.

Lemma C.20: The following equalities hold:

(i) T−1/2y′G0 = (cSNT

(1)
′cSNT

(1) , ..., cSNT

(R)
′cSNT

(R) );

(ii) T−1/2y′GH1(q) = ΣR
j=1c

SNT

(j)
′[(ΛSNT

(j) )q−1 − (µSNT
j )q−1Ik(j)]c

SNT

(j) ;

(iii) T−1/2y′GH2(q) = ΣJ
j=R+1c

SNT

(j)
′(ΛSNT

(j) )q−1cSNT

(j) ;

(iv) G′
0G0 = diag

(
cSNT

(1)
′ΛSNT

(1) c
SNT

(1) , ..., cSNT

(R)
′ΛSNT

(R) c
SNT

(R)

)
;

(v) G′
0gH1(q) =

 cSNT

(1)
′ΛSNT

(1) ((ΛSNT

(1) )q−1 − (Λ̄
SNT

(1) )q−1)cSNT

(1)

:

cSNT

(R)
′ΛSNT

(R) ((ΛSNT

(R) )q−1 − (barΛSNT

(R) )q−1)cSNT

(R)

 ;

(vi) T−1/2y′Q(G0)gH1(q) = τq,

where Λ̄
SNT

(j) = µSNT
j Ik(j) and

τq = ΣR
j=1c

SNT

(j)
′((ΛSNT

(j) )q−1 − Λ̄
SNT

(j) )q−1)cSNT

(j)

− ΣR
j=1

cSNT

(1)
′cSNT

(1)

cSNT

(j)
′ΛSNT

(j) c
SNT

(j)

(
cSNT

(j)
′ΛSNT

(j) ((ΛSNT

(j) )q−1 − (Λ̄
SNT

(j) )q−1)cSNT

(j)

)
.

Proof: We can easily show (i) � (iii) using the fact that ΞSNT

(j)
′X ′y/(N1/2T ) = cSNT

(j) .

The parts (iv) � (v) hold because

G′
0G0 =

(
ΞSNT

(1) c
SNT

(1) , ...,ΞSNT

(R) c
SNT

(R)

)′
SNT

(
ΞSNT

(1) c
SNT

(1) , ...,ΞSNT

(R) c
SNT

(R)

)
= diag

(
cSNT

(1)
′ΛSNT

(1) c
SNT

(1) , ..., cSNT

(R)
′ΛSNT

(R) c
SNT

(R)

)
;

G′
0gH1(q) =

(
ΞSNT

(1) c
SNT

(1) , ...,ΞSNT

(R) c
SNT

(R)

)′
ΣR

j=1Ξ
SNT

(j) ((ΛSNT

(j) )q−1 − (Λ̄
SNT

(j) )q−1)cSNT

(j)

=

c
SNT

(1)
′ΛSNT

(1) ((ΛSNT

(1) )q−1 − (Λ̄
SNT

(1) )q−1)cSNT

(1)

:

cSNT

(R)
′ΛSNT

(R) ((ΛSNT

(R) )q−1 − (Λ̄
SNT

(R) )q−1)cSNT

(R)

 .
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Finally, we can show

T−1/2y′G0(G
′G0)

−1G′
0gH1(q)

= ΣR
j=1

cSNT

(j)
′cSNT

(j)

cSNT

(j)
′ΛSNT

(j) c
SNT

(j)

(
cSNT

(j)
′ΛSNT

(j) ((ΛSNT

(j) )q−1 − (Λ̄
SNT

(j) )q−1)cSNT

(j)

)
;

T−1/2y′Q(G0)gH1(q)

= T−1/2y′gH1(q)− T−1/2y′G0(G
′
0G0)

−1G′
0gH1(q)

= ΣR
j=1c

SNT

(j)
′((ΛSNT

(j) )q−1 − (Λ̄
SNT

(j) )q−1)cSNT

(j)

− ΣR
j=1

cSNT

(j)
′cSNT

(1)

cSNT

(j) ′ΛSNT

(j) c
SNT

(j)

(
cSNT

(j)
′ΛSNT

(j) ((ΛSNT

(j) )q−1 − (Λ̄
SNT

(j) )q−1)cSNT

(j)

)
which imply (vi). Q.E.D.

Lemma C.21: Under (A.1) � (A.8),

(i)
∥∥G0 − T−1/2(F (1)β(1), ...,F (R)β(R))ΣR

∥∥
F
= Op(m

−γ);

(ii)
∥∥T−1/2y′G0 − (β′

(1)β(1), ...,β
′
(R)β(R))Σ

2
R

∥∥
2
= Op(m

−γ).

Proof: Observe that for j = 1, ..., R,

X

(NT )1/2
ΞSNT

(j) c
SNT

(j) − σ2
j

F (j)β(j)

T 1/2

=
F (j)

T 1/2
O∗

jjc
SNT

(j) +

(
X

(NT )1/2
ΞSNT

(j) −
F (j)

T 1/2
O∗

jj

)
cSNT

(j) − σ2
j

F (j)β(j)

T 1/2

=
F (j)

T 1/2
O∗

jjc
SNT

(j) +

(
X

(NT )1/2
ΞSNT

(j) −
F (j)

T 1/2
O∗

jj

)
cSNT

(j) − σ2
j

F (j)β(j)

T 1/2

= σ2
j

F (j)β(j)

T 1/2
+
F (j)

T 1/2

(
cSNT

(j) −O∗
jj

′σ2
jβ(j)

)
+

(
X

(NT )1/2
ΞSNT

(j) −
F (j)

T 1/2
O∗

jj

)
cSNT

(j) − σ2
j

F (j)β(j)

T 1/2

=
F (j)

T 1/2

(
cSNT

(j) −O∗
jj

′σ2
jβ(j)

)
+

(
X

(NT )1/2
ΞSNT

(j) −
F (j)

T 1/2
O∗

jj

)
cSNT

(j) .

This implies (i) because∥∥∥∥G0 −
1

T 1/2
(F (1)β(1), ...,F (R)β(R))ΣR

∥∥∥∥
F

≤ ΣR
j=1

∥∥∥∥ X

(NT )1/2
ΞSNT

(j) c
SNT

(j) − σ2
j

F (j)β(j)

T 1/2

∥∥∥∥
2

= Op(m
−γ),

where the last equality is due to Lemma 2.4.1. For (ii), observe that

∥∥T−1/2y′G0 − (β′
(1)β(1), ...,β

′
(R)β(R))Σ

2
R

∥∥
2
≤ ΣR

j=1

∥∥∥∥∥ y′

T 1/2

XΞSNT

(j) c
SNT

(j)

(NT )1/2
− σ4

jβ
′
(j)β(j)

∥∥∥∥∥
2

.
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Thus, we can also obtain (ii) by Lemma 2.4.1. Q.E.D.

Lemma C.22: Under (A.1) � (A.8), for q ≥ 1,

(i) ∥gcH(q)∥2 = Op(m
−γ);

(ii)
∥∥∥d̂0(q)− d0(q)

∥∥∥
2
= Op(m

−γ);

(iii) ∥gL(q)∥2 = Op

(
m−(q−1/2)(T−1/2 +m−3/2)

)
.

Proof: When q = 1, Q(G0)gH1(1) = 0T×1. For q ≥ 2,

∥Q(G0)gH1(q)∥2 ≤ ∥Q(G0)∥2

∥∥∥∥ X

(NT )1/2

∥∥∥∥
2

∥vH1(q)∥2

=

∥∥∥∥ X

(NT )1/2

∥∥∥∥
2

∥vH1(q)∥2 = Op(1)×Op(m
−γ),

by Lemma 2.4.2. The same lemma also implies

∥gH2(q)∥2 ≤
∥∥∥∥ X

(NT )1/2

∥∥∥∥
2

∥vH1(q)∥2 = Op(m
−γ)

These results imply (i) for q ≥ 2. Part (ii) holds by Lemma 2.4.2 because∥∥∥d̂0(q)− d0(q)
∥∥∥
2
≤
∥∥G′

0G0)
−1G0

∥∥
2
∥gH1(q)∥2 = Op(m

−γ).

Part (ii) holds by Lemma 2.4.1 because

∥gL(q)∥2 ≤
∥∥∥∥ X

(NT )1/2
ΞSNT

L

∥∥∥∥
2

∥∥ΛSNT
L

∥∥q−1

2

∥∥cSNT
L

∥∥
2

= Op(m
−(q−1/2)(T−1/2 +m−3/2)). (Q.E.D.)

Corollary C.22: Under (A.1) � (A.8), for q ≥ 1,

(i) ∥Gc
H(q)∥F = Op(m

−γ);

(ii)
∥∥∥D̂0(q)−D0(q)

∥∥∥
F
= Op(m

−γ);

(iii) ∥GL(q)∥F = Op

(
m−1/2(T−1/2 +m−3/2)

)
.

Proof: Parts (i) and (ii) hold by Lemma C.22 because

∥Gc
H(q)∥F ≤ Σq

j=1 ∥gcH(j)∥2 ;
∥∥∥D̂0(q)−D0(q)

∥∥∥
F
≤ Σq

j=1

∥∥∥d̂0(q)− d0(q)
∥∥∥
2
.
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Part (iii) also holds by Lemma C.22 because ∥GL(q)∥F ≤ Σq
j=1 ∥gL(j)∥2 ≤ q × ∥gL(1)∥2.

Q.E.D.

Lemma C.23: Let

ρj,q =
cSNT

(j)
′cSNT

(j)

(
cSNT

(j)
′ΛSNT

(j)

(
(ΛSNT

(j) )q−1 − (Λ̄
SNT

(j) )q−1
)
cSNT

(j)

)
cSNT

(j)
′ΛSNT

(j) c
SNT

(j)

Under (A.1) � (A.8), for j = 1, 2, ..., R and q = 1, 2, ....,

ρj,q =
cSNT

(j)
′ΛSNT

(j)

(
(ΛSNT

(j) )q−1 − (Λ̄
SNT

(j) )q−1
)
cSNT

(j)

µSNT
j

+Op(m
−2γ).

Proof: Observe that by Lemma 2.4.1,
∥∥∥ΛSNT

(j) − Λ̄
SNT

(j)

∥∥∥
F

= Op(m
−γ) for j = 1, ..., R.

With this result, we can show

ρj,q −
cSNT

(j)
′ΛSNT

(j)

(
(ΛSNT

(j) )q−1 − (Λ̄
SNT

(j) )q−1
)
cSNT

(j)

µSNT
j

= cSNT

(j)
′cSNT

(j)

(
cSNT

(j)
′ΛSNT

(j) ((ΛSNT

(j) )q−1 − Λ̄
SNT

(j) )q−1)cSNT

(j)

)
×

(
1

cSNT

(j)
′ΛSNT

(j) c
SNT

(j)

− 1

cSNT

(j)
′Λ̄

SNT

(j) c
SNT

(j)

)

= cSNT

(j)
′cSNT

(j)

cSNT

(j)
′(Λ̄

SNT

(j) −ΛSNT

(j) )cSNT

(j)(
cSNT

(j)
′Λ̄

SNT

(j) c
SNT

(j)

)(
cSNT

(j)
′ΛSNT

(j) c
SNT

(j)

)
×
(
cSNT

(j)
′ΛSNT

(j) ((ΛSNT

(j) )q−1 − (Λ̄
SNT

(j) )q−1)cSNT

(j)

)
= Op(m

−2γ)

which completes the proof. Q.E.D.

Lemma C.24: Under (A.1) � (A.8), for q ≥ 1,

(i)
∥∥T−1/2y′gcH(q)

∥∥
2
= Op(m

−2γ);

(ii)
∥∥T−1/2y′gL(q)

∥∥
2
= Op

(
m−(q−1)(T−1/2 +m−3/2)

)
.

Proof: We can obtain (i) by showing that∥∥T−1/2y′Q(G0)gH1(q)
∥∥
2
= Op(m

−2γ); (C.8)∥∥T−1/2y′gH2(q)
∥∥
2
= Op(m

−2γ). (C.9)
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Consider τq de�ned in Lemma C.20. By Lemma C.23 and Lemma 2.4.1, for q = 1, 2, ..., R,

τq = ΣR
j=1c

SNT

(j)
′((ΛSNT

(j) )q−1 − (Λ̄
SNT

(j) )q−1)cSNT

(j) − ΣR
j=1ρj,q

= ΣR
j=1c

SNT

(j)
′((ΛSNT

(j) )q−1 − (Λ̄
SNT

(j) )q−1)cSNT

(j)

− ΣR
j=1

cSNT

(j)
′ΛSNT

(j) ((ΛSNT

(j) )q−1 − (Λ̄
SNT

(j) )q−1)cSNT

(j)

µSNT
j

+Op(m
−2γ)

= ΣR
j=1

cSNT

(j)
′(Λ̄

SNT

(j) −ΛSNT

(j) )
(
(ΛSNT

(j) )q−1 − (Λ̄
SNT

(j) )q−1
)
cSNT

(j)

µSNT
j

+Op(m
−2γ) = Op(m

−2γ).

Thus, (C.8) holds because, by Lemma C.20, T−1/2y′Q(G0)gH1(q) = τq. Finally, by Lemma
C.20 and Lemma 2.4.1, (C.9) also holds because∥∥T−1/2y′gH2(q)

∥∥
2
= ΣJ

j=R+1

∥∥∥(ΛSNT

(j) )q−1
∥∥∥
2

∥∥∥cSNT

(j)

∥∥∥2
2
= Op(m

−2γ).

We can obtain (ii) because∥∥T−1/2y′gL(q)
∥∥
2
=
∥∥cSNT

L
′(ΛSNT

L )q−1cSNT
L

∥∥
2
≤ Op(m

−(q−1))
∥∥cSNT

L

∥∥2
2

Q.E.D.

Corollary C.24: Under (A.1) � (A.8), for q ≥ 1,

(i)
∥∥T−1/2yG

H
c(q)
∥∥
2
= Op(m

−2γ);

(ii)
∥∥T−1/2y′GL(q)

∥∥
2
= Op

(
(T−1/2 +m−3/2)2

)
Proof: Observe that∥∥T−1/2y′Gc

H(q)
∥∥
2
≤ Σq

j=1

∥∥T−1/2y′gcH(j)
∥∥
2
;∥∥T−1/2y′GL(q)

∥∥
2
≤ ΣR

j=1

∥∥T−1/2y′gL(q)
∥∥
2
≤ q ×

∥∥T−1/2y′gL(1)
∥∥
2
.

Thus, (i) and (ii) hold by Lemma C.23. Q.E.D.

Proof of Lemma 2.4.3: Parts (i) and (ii) hold by Lemma C.21. Parts (iii) and (iv)
hold by Lemma C.22. Part (vi) holds by Lemma C.23. Q.E.D.

Proof of Corollary 2.4.3: The results hold by Corollaries C.22 and C.24. Q.E.D.

Lemma C.25: Under (A.1) � (A.8),
∥∥∥(D̂0(R))−1 − (D0(R))−1

∥∥∥
F
= Op(m

−γ).

Proof: The result holds by Corollary 2.4.3 and Lemma A.2 because∥∥∥(D̂0(R))−1 − (D0(R))−1
∥∥∥
F
=
∥∥∥(D̂0(R))−1

∥∥∥
F

∥∥∥D̂0(R)−D0(R)
∥∥∥
F

∥∥(D0(R))−1
∥∥
F

= Op(m
−γ). (Q.E.D.)
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Lemma C.26: Under (A.1) � (A.8),
∥∥(G′

0G0)
−1T−1/2G′

0y −Σ−1
R 1R

∥∥
2
= Op(m

−γ).

Proof: Let Σ̂R = diag(µSNT
1 , ..., µSNT

R ). Observe that for j = 1, ..., R,∣∣∣∣∣ cSNT

(j)
′cSNT

(j)

cSNT

(j)
′ΛSNT

(j) c
SNT

(1)

−
cSNT

(j)
′cSNT

(j)

µSNT
j cSNT

(j)
′cSNT

(j)

∣∣∣∣∣ = Op(m
−γ) (C.10)

because ∣∣∣∣∣ cSNT

(j)
′cSNT

(j)

cSNT

(j)
′ΛSNT

(j) c
SNT

(j)

−
cSNT

(j)
′cSNT

(j)

µSNT
j cSNT

(j)
′cSNT

(j)

∣∣∣∣∣
≤

∣∣∣µSNT
j cSNT

(j)
′cSNT

(j) − cSNT

(j)
′ΛSNT

(j) c
SNT

(1)

∣∣∣
(cSNT

(j)
′ΛSNT

(j) c
SNT

(1) )µSNT
j

≤

∥∥∥∥∥ 1

(cSNT

(j)
′ΛSNT

(j) c
SNT

(1) )µSNT
j

∥∥∥∥∥
2

∥∥∥Λ̄SNT

(j) −ΛSNT

(j)

∥∥∥
F

∥∥∥cSNT

(j)

∥∥∥2
2

= Op(1)×Op(m
−γ)×Op(1) = Op(m

−γ).

With (C.10), we can have∥∥∥(G′
0G0)

−1T−1/2G′
0y − Σ̂

−1

R 1R

∥∥∥
2
= Op(m

−γ), (C.11)

because ∥∥∥∥(G′
0G0)

−1G
′
0y

T 1/2
− Σ̂

−1

R 1R

∥∥∥∥
2

=

∥∥∥∥∥∥∥∥∥∥


c
SNT
(1)

′c
SNT
(1)

c
SNT
(1)

′Λ
SNT
(1)

c
SNT
(1)

:
c
SNT
(R)

′c
SNT
(R)

c
SNT
(R)

′Λ
SNT
(R)

c
SNT
(R)

−


c
SNT
(1)

′c
SNT
(1)

c
SNT
(1)

′c
SNT
(1)

:
c
SNT
(R)

′c
SNT
(R)

µ
SNT
R c

SNT
(R)

′c
SNT
(R)


∥∥∥∥∥∥∥∥∥∥
2

≤ ΣR
j=1

∣∣∣∣∣ cSNT

(j)
′cSNT

(j)

cSNT

(j)
′ΛSNT

(j) c
SNT

(1)

−
cSNT

(j)
′cSNT

(j)

µSNT
j cSNT

(j)
′cSNT

(j)

∣∣∣∣∣ .
By Lemma 2.4.1, we have 1/µSNT

j − 1/σ2
j = (σ2

j − µSNT
j )/(µSNT

j σ2
j ) = Op(m

−γ). Thus,∥∥∥Σ̂−1

R 1R −Σ−1
R 1R

∥∥∥
2
= Op(m

−γ). (C.12)

By (C.11) and (C.12), we can obtain the desired result because∥∥(G′
0G0)

−1T−1/2G′
0y −Σ−1

R 1R

∥∥
2

≤
∥∥∥(G′

0G0)
−1T−1/2G′

0y − Σ̂
−1

R 1R

∥∥∥
2
+
∥∥∥Σ̂−1

R 1R −Σ−1
R 1R

∥∥∥
2

(Q.E.D.)
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Remark: Because G0, G
c
H(q), and GL(q) are mutually orthogonal by construction, we

can obtain the following results:

P̃
PLS

1:R
′P̃

PLS

1:R

NT
− D̂0(R)G′

0G0
ˆD0(R) = Gc

H(R)′Gc
H(R) +GL(R)′GL(R);

P̃
PLS

1:R
′p̃PLS

R+1

NT
− D̂0(R)′G′

0G0d̂0(R + 1) = Gc
H(R)′gcH(R + 1) +GL(R)′gL(R + 1);

P̃
PLS

1:R
′y

N1/2T
− D̂0(R)′T−1/2G′

0y = T−1/2Gc
H(R)′y + T−1/2GL(R)′y;

p̃PLS
R

′y

N1/2T
− d̂0(R)′

G′
0y

T 1/2
=
gcH(R)′y

T 1/2
+
gL(R)′y

T 1/2
;

p̃PLS
R+1

′y

N1/2T
− d̂0(R + 1)′

G′
0y

T 1/2
=
gcH(R + 1)′y

T 1/2
+
gL(R + 1)′y

T 1/2
.

Lemma C.27: Under (A.1) � (A.8),

∥Gc
H(R)′Gc

H(R)∥F = Op(m
−2γ);∥∥T−1Gc

H(R)′gcH(R + 1)
∥∥
2
= Op(m

−2γ);
∥∥T−1Gc

H(R)′y
∥∥
2
= Op(m

−2γ);∥∥T−1/2gcH(R)′y
∥∥
2
= Op(m

−2γ);
∥∥T−1/2gcH(R + 1)′y

∥∥
2
= Op(m

−2γ).

Proof: The results hold by Lemma 2.4.3 and Corollary 2.4.3. Q.E.D.

Lemma C.28: Under (A.1) � (A.8),

∥GL(R)′GL(R)∥F = Op

(
m−1(T−1/2 +m−3/2)2

)
;

∥GL(R)′gL(R + 1)∥2 = Op

(
m−R−1(T−1/2 +m−3/2)2

)
;∥∥T−1/2GL(R)′y

∥∥
2
= Op

(
(T−1/2 +m−3/2)2

)
;∥∥T−1/2gL(R)′y

∥∥
2
= Op

(
m−R−1(T−1/2 +m−3/2)2

)
;∥∥T−1/2gL(R + 1)′y

∥∥
2
= Op

(
m−R(T−1/2 +m−3/2)2

)
;∥∥T−1/2y′gL(q)

∥∥ = Op

(
m−(q−1)(T−1/2+m−3/2)2

)
.

Proof: The results hold by Lemma 2.4.3 and Corollary 2.4.3. Q.E.D.

Proof of Lemma 2.4.4: All the results hold by Lemmas C.27 and C.28. Q.E.D.

Lemma C.29: Let d∗
0(q) = Σq−1

R 1R andD∗
0(q) = (d∗

0(1), ...,d
∗
0(q)). Under (A.1) � (A.8),

as m → ∞,

(i) D̂0(R)′G′
0G0D̂0(R) →p Ψ∗ ≡D∗

0(R)′Diag(σ6
1β

′
(1)β(1), ..., σ

6
Rβ

′
(R)β(R))D

∗
0(R);

(ii) D̂0(R)G′
0G0d̂0(R + 1) →p ψ

∗ ≡D∗
0(R)′diag(σ6

1β
′
(1)β(1), ..., σ

6
Rβ

′
(R)β(1))d

∗
0(R + 1)
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(iii) T−1/2D̂0(R)′G′
0y →p π

∗ ≡D∗
0(R)′

(
σ4
1β

′
(1)β(1), ..., σ

4
Rβ

′
(R)β(R)

)′
.

Proof: By Lemma 2.4.1, for j = 1, ..., R, we have

Λ̂
SNT

(j) →p σ2
jIk(j); cSNT

(j) →p O
∗
jjσ

2
jβ(j). (C.13)

In addition, it is straightforward to show

G′
0G0 = V

′
0Λ

SNT
H1 V 0 = diag(c

SNT

(1)
′ΛSNT

(1) c
SNT

(1) , ..., cSNT

(R)
′ΛSNT

(R) c
SNT

(R) ); (C.14)

G′
0y

T 1/2
=

c
SNT

(1)
′ΞSNT

(1)
′

:

cSNT

(R)
′ΞSNT

(R)
′

 ;
X ′y

N1/2T
=

c
SNT

(1)
′cSNT

(1)

:

cSNT

(R)
′cSNT

(R)

 . (C.15)

By Lemmas 2.4.1 and 2.4.3,∥∥∥d̂0(q)− d∗
0(q)

∥∥∥ ≤
∥∥∥d̂0(q)− d0(q)

∥∥∥+ ∥d0(q)− d∗
0(q)∥ = Op(m

−γ). (C.16)

The desired results can be obtained by (C.13) � (C.16) and Lemma 2.4.1. Q.E.D.

Proof of Theorem 2: We begin by considering the cases in which R < K. Observe
that

(D̂0(R))−1(G′
0G0)

−1T−1/2G′
0y =

(
D̂0(R)G′

0G0D̂0(R)
)−1

D̂0(R)′T−1/2G′
0y. (C.17)

With this result and Lemma 2.4.4, we can show∥∥∥N1/2δ̃1:R − (D̂0(R))−1G′
0G0)

−1T−1/2G′
0y
∥∥∥
2
= Op(m

−2γ). (C.18)

Lemma C.26 and (C.17) imply∥∥∥N1/2δ̃1:R − (D̂0(R))−1Σ−1
R 1R

∥∥∥
2

≤
∥∥∥N1/2δ̃1:R − (D̂

(

0R))−1(G′
0G0)

−1T−1/2G′
0y
∥∥∥
2

+
∥∥∥(D̂0(R))−1

∥∥∥
F

∥∥G′
0G0)

−1T−1/2G′
0y −Σ−1

R 1R

∥∥
2

= Op(m
−2γ) +Op(m

−γ) = Op(m
−γ).

By this result and Lemma C.25, we can obtain (i) because∥∥∥N1/2δ̃1:R − (D0(R))−1Σ−1
R 1R

∥∥∥
2

=
∥∥∥N1/2δ̃1:R − (D̂0(R))−1Σ−1

R 1R + (D̂0(R))−1Σ−1
R 1R − (D0(R))−1Σ−1

R 1R

∥∥∥
2

≤
∥∥∥N1/2δ̃1:R − (D̂0(R))−1Σ−1

R 1R

∥∥∥
2
+
∥∥∥(D̂0(R))−1 − (D0(R))−1

∥∥∥
F

∥∥Σ−1
R 1R

∥∥
2

= Op(m
−γ) +Op(m

−γ) = Op(m
−γ).
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When R = K, we have D̂0(R) =D0(R). With this result, (C.19) and Lemma 2.4.4, we can
obtain∥∥∥N1/2δ̃1:R − (D0(R))−1(G′

0G0)
−1T−1/2G′

0y
∥∥∥
2
= Op

(
m−R−1(T−1/2 +m−3/2)2

)
.

By this result and Lemma C.25, we can show that (i) holds even when R = K, because∥∥∥N1/2δ̃1:R − (D0(R))−1Σ−1
R 1R

∥∥∥
2

≤
∥∥∥N1/2δ̃1:R − (D0(R))−1(G′

0G0)
−1T−1/2G′

0y
∥∥∥
2

+
∥∥(D0(R))−1

∥∥
F

∥∥G′
0G0)

−1T−1/2G′
0y −Σ−1

R 1R

∥∥
2

= Op

(
m−R−1(T−1/2 +m−3/2)2

)
+Op(m

−γ) = Op(m
−γ).

Part (ii) is obtained by Theorem 1 and (i) because

∥∥ỹPLS
T+2|R − ŷ∗T+2

∥∥
2
=

∥∥∥∥x′
·T+1

N1/2
Ã

PLS

1:R N1/2δ̃
PLS

1:R − ŷ∗T+2

∥∥∥∥
2

=
∥∥g′T+1ΣRD0(R)(D0(R))−1Σ−1

R 1R − ŷ∗T+2

∥∥
2
+Op(m

−γ)

= 0 +Op(m
−γ).

Finally, for (iii), observe that by Lemmas 2.4.4 and C.29, we have

P̃
PLS

1:R
′y

N1/2T
= T−1/2(D̂0(R)′G′

0y +Gc
H(R)′y +GL(R)′y)

→p D
∗
0(R)

(
σ4
1β

′
(1)β(1), ..., σ

4
1β

′
(1)β(1)

)′
;

P̃
PLS

1:R
′P̃

PLS

1:R )

NT
= D̂0(R)′G′

0G0D̂0(R) +Gc
H(R)′Gc

H(R) +GL(R)′GL(R)

→p D
∗
0(R)′diag(σ6

1β
′
(1)β(1), ..., σ

6
Rβ

′
(R)β(R))D

∗
0(R).

By these two results, we can obtain

y′P |(P̃ PLS

1:R )y

T
=
y′P̃

PLS

1:R

N1/2T

(
P̃

PLS

1:R
′P̃

PLS

1:R

NT

)−1

P̃
PLS

1:R
′y

N1/2T
→p Σ

R
j=1σ

2
jβ

′
(j)β(j),

which implies (iii). Q.E.D.

Lemma C.30: Let θ̃ ≡ (P̃
PLS

1:R
′P̃

PLS

1:R )−1P̃
PLS

1:R
′p̃PLS

R+1 . Then,

(i)
∥∥∥θ̃ − (D0(R))−1d0(R + 1)

∥∥∥
2
= Op(m

−γ), if R < K;

(ii)
∥∥∥θ̃ − (D0(R))−1d0(R + 1)

∥∥∥
2
= Op

(
m−1(T−1/2 +m−3/2)2

)
, if R = K.
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Proof: Using Lemma B.2 and some algebra, we can show(
P̃

PLS

1:R
′P̃

PLS

1:R

NT

)−1
P̃

PLS

1:R
′p̃PLS

R+1

NT

= (D̂0(R))−1d̂0(R + 1) +A1 (G
c
H(R)′gcH(R + 1) +GL(R)′gL(R + 1))

+A1 (G
c
H(R)′Gc

H(R) +GL(R)′GL(R))a2,

where

A1 =
(
D̂0(R)G′

0G0D̂0(R)
)−1

;

a2 =
(
D̂0(R)G′

0G0D0(R) +Gc
H(R)′Gc

H(R) +GL(R)′GL(R)
)−1

×
(
D̂0(R)G′

0G0d̂0(R + 1) +Gc
H(R)′gcH(R + 1) +GL(R)′gL(R + 1)

)
.

By Lemmas C.29 and 2.4.3, A1 →p (Ψ∗)−1 and a2 →p (Ψ∗)−1ψ∗. Thus, we can have∥∥∥θ̃ − (D̂0(R))−1d̂0(R + 1)
∥∥∥
2
= Op (∥Gc

H(R)′Gc
H(R) +GL(R)′GL(R)∥F ) . (C.19)

We begin by proving (ii). When R = K, we have D̂0(R) = D0(R), d̂0(R + 1) = d0(R + 1),
and Gc

H(R)′Gc
H(R) + GL(R)′GL(R) = GL(R)′GL(R). By substituting these results into

(C.21) and applying Lemma C.28, we can obtain (ii).
For (i), observe that ∥Gc

H(R)′Gc
H(R) +GL(R)′GL(R)∥F = Op(m

−2γ) becauseGc
H(R)′Gc

H(R)
asymptotically dominates GL(R)′GL(R). Thus, from (C.19), we have∥∥∥θ̃ − (D̂0(R))−1d̂0(R + 1)

∥∥∥
2
= Op(m

−2γ). (C.20)

Now, by Lemma C.25 and Corollary 2.4.3, we can show∥∥∥(D̂0(R))−1d̂0(R + 1)− (D0(R))−1d0(R + 1)
∥∥∥
2

≤
∥∥∥(D̂0(R))−1d̂0(R + 1)− (D̂0(R))−1d0(R + 1)

∥∥∥
2

+
∥∥∥(D̂0(R))−1d0(R + 1)− (D0(R))−1d0(R + 1)

∥∥∥
2

=
∥∥∥(D̂0(R))−1

∥∥∥
F

∥∥∥d̂0(R + 1)− d0(R + 1)
∥∥∥
2

+
∥∥∥(D̂0(R))−1 − (D0(R))−1

∥∥∥
F

∥∥∥d(
0R + 1)

∥∥∥
2

= Op(m
−γ).

which, with (C.19), implies∥∥∥θ̃ − (D0(R))−1d0(R + 1)
∥∥∥
2

≤
∥∥∥θ̃ − (D̂0(R))−1d̂0(R + 1)

∥∥∥
2
+
∥∥∥(D̂0(R))−1d̂0(R + 1)− (D0(R))−1d0(R + 1)

∥∥∥
2

= Op(m
−2γ) +Op(m

−γ) = Op(m
−γ).
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This completes the proof. Q.E.D.

Lemma C.31: De�ne Y1,NT = (NT )−1p̃PLS
R+1

′Q(P̃
PLS

1:R )p̃PLS
R+1 . Under (A.1) � (A.8),

Y1,NT = gcH(R + 1)′gcH(R + 1) + gL(R + 1)′gL(R + 1)

− (gcH(R + 1)′Gc
H(R) + gL(R + 1)′GL(R))a3

− a′
4 (G

c
H(R)′gcH(R + 1) +GL(R)′gL(R + 1))

+ a′
4 (G

c
H(R)′Gc

H(R) +GL(R)′GL(R))a2,

where a2 is de�ned in Lemma C.30, a3 →p Ψ∗)−1ψ∗, and a4 →p Ψ∗)−1ψ∗.

Proof: Using Lemma B.2, we can show

Y1,NT =
p̃PLS
R+1

′p̃PLS
R+1

NT
−
p̃PLS
R+1

′P̃
PLS

1:R

NT

(
P̃

PLS

1:R
′P̃

PLS

1:R

NT

)−1
P̃

PLS

1:R
′p̃PLS

R+1

NT

= gcH(R + 1)′gcH(R + 1) + gL(R + 1)′gL(R + 1)

− (gcH(R + 1)′Gc
H(R) + gL(R + 1)′GL(R))

(
D̂0(R)G′

0G0D̂0(R)
)−1

× D̂0(R)G′
0G0d̂0(R + 1)

−
(
d̂0(R + 1)′G′

0G0D̂0(R) + gcH(R + 1)′Gc
H(R) + gL(R + 1)′GL(R)

)
×
(
D̂0(R)G′

0G0D̂0(R)
)−1

(Gc
H(R)′gcH(R + 1) +GL(R)′gL(R + 1))

+
(
d̂0(R + 1)G′

0G0D̂0(R) + gcH(R + 1)′Gc
H(R) + gL(R + 1)′GL(R)

)
×
(
D̂0(R)G′

0G0D̂0(R)
)−1

(Gc
H(R)′Gc

H(R) +GL(R)′GL(R))

×
(
D̂0(R)G′

0G0D0(R) +Gc
H(R)′Gc

H(R) +GL(R)′GL(R)
)−1

×
(
D̂0(R)G′

0G0d̂0(R + 1) +Gc
H(R)′gcH(R + 1) +GL(R)′gL(R + 1)

)
= gcH(R + 1)′gcH(R + 1) + gL(R + 1)′gL(R + 1)

− (gcH(R + 1)′Gc
H(R) + gL(R + 1)′GL(R))a3

− a′
4 (G

c
H(R)′gcH(R + 1) +GL(R)′gL(R + 1))

+ a′
4 (G

c
H(R)′Gc

H(R) +GL(R)′GL(R))a2,

where

a3 =
(
D̂0(R)G′

0G0D̂0(R)
)−1

D̂0(R)G′
0G0d̂0(R + 1) →p (Ψ

∗)−1ψ∗;

a′
4 =

(
d̂0(R + 1)G′

0G0D̂0(R) + g∗H(R + 1)′G∗
H(R) + gL(R + 1)′GL(R)

)
×
(
D̂0(R)G′

0G0D̂0(R)
)−1

→p ψ
∗′(Ψ∗)−1,

by Lemmas C.29 and 2.4.3. Q.E.D.

Corollary C.31: Under (A.1) � (A.8),
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(i) Y1,NT = Op(m
−2γ) if R < K;

(ii) Y1,NT = Op

(
m−1(T−1/2 +m−3/2)2

)
, if R = K.

Proof: When R < K,

∥gcH(R + 1)′gcH(R + 1) + gL(R + 1)′gL(R + 1)∥2
≤ ∥gcH(R + 1)′gcH(R + 1)∥2 + ∥gL(R + 1)′gL(R + 1)∥2
= Op(m

−2γ) +Op(m
−2(R+1/2))Op

(
(T−1/2 +m−3/2)2

)
= Op(m

−2γ);

∥gcH(R + 1)′Gc
H(R) + gL(R + 1)′GL(R)∥2

≤ ∥gcH(R + 1)′Gc
H(R)∥2 + ∥gL(R + 1)′GL(R)∥2

= Op(m
−2γ) +Op(m

−R−1)Op

(
(T−1/2 +m−3/2)2

)
= Op(m

−2γ);

∥Gc
H(R)′Gc

H(R) +GL(R)′GL(R)∥F
≤ ∥Gc

H(R)′Gc
H(R)∥F + ∥GL(R)′GL(R)∥F

= Op(m
−2γ) +Op

(
m−1(T−1/2 +m−3/2)2

)
= Op(m

−2γ)

which imply (i). When R = K,

∥gcH(R + 1)′gcH(R + 1) + gL(R + 1)′gL(R + 1)∥2
= ∥gL(R + 1)′gL(R + 1)∥2 = Op(m

−2(R+1/2))Op

(
(T−1/2 +m−3/2)2

)
;

∥gcH(R + 1)′Gc
H(R) + gL(R + 1)′GL(R)∥2

≤ ∥gL(R + 1)′GL(R)∥2 = Op(m
−R−1)Op

(
(T−1/2 +m−3/2)2

)
;

∥Gc
H(R)′Gc

H(R) +GL(R)′GL(R)∥2
= ∥GL(R)′GL(R)∥2 = Op(m

−1)Op

(
(T−1/2 +m−3/2)2

)
which imply (ii). Q.E.D.

Lemma C.32: De�ne Y2,NT = y′Q(P̃
PLS

1:R )p̃PLS
R+1y/(N

1/2T ). Under (A.1) � (A.8),

Y2,NT = T−1/2y′gcH(R + 1) + T−1/2y′gL(R + 1)

− T−1/2 (y′Gc
H(R) + y′GL(R))a3

− a′
5 (G

c
H(R)′gcH(R + 1) +GL(R)′gL(R + 1))

+ a′
5(G

c
H(R)′Gc

H(R) +GL(R)′GL(R))a2,

where a2 and a3 are de�ned in Lemmas C.30 and C.31, and a5 →p (Ψ∗)−1π∗.
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Proof: Using Lemma B.2, we can show

Y2,NT =
y′p̃PLS

R+1

N1/2T
− y′P̃

PLS

1:R

N1/2T

(
P̃

PLS

1:R
′P̃

PLS

1:R

NT

)−1

P̃
PLS

1:R
′y

NT 1/2

=
y′g∗H(R + 1)

T 1/2
+
y′gL(R + 1)

T 1/2

−
(
y′Gc

H(R)

T 1/2
+
y′GL(R)

T 1/2

)(
D̂0(R)G′

0G0D̂0(R)
)−1 (

D̂0(R)G′
0G0d̂0(R + 1)

)
−
(
y′G0

T 1/2
D̂0(R) +

y′Gc
H(R)

T 1/2
+
y′GL(R)

T 1/2

)(
D̂0(R)G′

0G0D̂0(R)
)−1

× (Gc
H(R)′gcH(R + 1) +GL(R)′gL(R + 1))

+

(
y′G0

T 1/2
D̂0(R) +

y′Gc
H(R)

T 1/2
+
y′GL(R)

T 1/2

)
×
(
D̂0(R)G′

0G0D̂0(R)
)−1

(G∗
H(R)′G∗

H(R) +GL(R)′GL(R))

×
(
D̂0(R)G′

0G0D0(R) +G∗
H(R)′G∗

H(R) +GL(R)′GL(R)
)−1

×
(
D̂0(R)G′

0G0d̂0(R + 1) +G∗
H(R)′g∗H(R + 1) +GL(R)′gL(R + 1)

)
=
y′gcH(R + 1)

T 1/2
+
y′gL(R + 1)

T 1/2
−
(
y′Gc

H(R)

T 1/2
+
y′GL(R)

T 1/2

)
a3

− a′
5 (G

∗
H(R)′g∗H(R + 1) +GL(R)′gL(R + 1))

+ a′
5(G

∗
H(R)′G∗

H(R) +GL(R)′GL(R))a2

where

a5 =
(
D̂0(R)G′

0G0D̂0(R)
)−1

(
D̂0(R)

G′
0y

T 1/2
+
G∗

H(R)′y

T 1/2
+
GL(R)′y

T 1/2

)
→p (Ψ∗)−1π∗

by Lemmas C.29 and 2.4.3. Q.E.D.

Corollary C.32: Under (A.1) � (A.8), When R < K,

(i) Y2,NT = Op(m
−2γ), when R < K;

(ii) Y2,NT = Op

(
(T−1/2 +m−3/2)2

)
, when R = K.
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Proof: When R < K,∥∥∥∥y′gcH(R + 1)

T 1/2
+
y′gL(R + 1)

T 1/2

∥∥∥∥
2

≤
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2
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−R)Op((T
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2
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2
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2

= Op(m
−2γ) +Op((T

−1 +m−3/2)2)Op(m
−2γ);

∥Gc
H(R)′gcH(R + 1) +GL(R)′gL(R + 1)∥2
≤ ∥Gc

H(R)′gcH(R + 1)∥2 + ∥GL(R)′gL(R + 1)∥2
= Op(m

−2γ) +Op(m
−R−1)Op((T

−1 +m−3/2)2) = Op(m
−2γ);

∥Gc
H(R)′Gc

H(R) +GL(R)′GL(R)∥F
≤ ∥Gc

H(R)′Gc
H(R)∥F + ∥GL(R)′GL(R)∥F

= Op(m
−2γ) +Op(m

−1)Op((T
−1 +m−3/2)2) = Op(m

−2γ),

which imply (i). When R = K,∥∥∥∥y′gcH(R + 1)

T 1/2
+
y′gL(R + 1)

T 1/2

∥∥∥∥
2

=
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T 1/2
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2

= Op(m
−R)Op

(
(T−1/2 +m−3/2)2

)
∥∥∥∥y′Gc

H(R)

T 1/2
+
y′GL(R)

T 1/2

∥∥∥∥
2

=

∥∥∥∥y′GL(R)

T 1/2
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2

= Op

(
(T−1/2 +m−3/2)2

)
;

∥Gc
H(R)′gcH(R + 1) +GL(R)′gL(R + 1)∥2
= ∥GL(R)′gL(R + 1)∥2 = Op(m

−R−1)Op

(
(T−1/2 +m−3/2)2

)
;

∥Gc
H(R)′Gc

H(R) +GL(R)′GL(R)∥F = Op(m
−1)Op

(
(T−1/2 +m−3/2)2

)
which imply (ii). Q.E.D.

Proof of Lemma 2.4.5: Parts (i) and (iii) hold by Lemma C.30. Parts (ii) and (vi)
hold by Corollaries C.31 and C.32. Q.E.D.
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Proof of Theorem 3: Observe that

y′P(P̃
PLS

1:R+1)y

T
− y′P(P̃

PLS

1:R )y

T

=
y′Q(P̃

PLS
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(
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NT

)−1

p̃PLS
R+1

′Q(P̃
PLS

1:R )y

N1/2T

=
(Y1,NT )

2

Y2,NT

.

When R = K,

(Y2,NT )
2/Y1,NT = Op(((m/T )1/2 +m−1)2) = Op(m/T )

by Corollaries C.31 and C.32. If m/T → ∞, (Y2,NT )
2/Y1,NT = op(1). If m/T = O(1) > 0,

(Y2,NT )
2/Y1,NT = |Op(1)| > 0. Finally, when R < K, (Y2,NT )

2/Y1,NT = Op(m
−2γ) = op(1).

This completes the proof of the theorem. Q.E.D.

Lemma C.33: Let YNT = Y2,NT/Y1,NT . Then,
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)
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By the inversion rule for partitioned matrix, P̃
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NT
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(C.22)

where θ̃ is de�ned in Lemma 2.4.5. In addition,(
θ̃
−1

)′
(
P̃

PLS

1:R
′y/(N1/2T )

p̃PLS
R+1

′y/(N1/2T )

)
= −p̃PLS

R+1
′Q(P̃

PLS

1:R )y/(N1/2T ). (C.23)

We can obtain the desired result by substituting (C.22) and (C.23) into (C.21). Q.E.D.
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Proof of Theorem 4: Part (i) holds by Lemma C.34. For (ii), observe that(
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When R < K,

YNT = Op(1);
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Notice that by Lemma C.18,∥∥∥∥x′
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which implies parts (ii) and (iii). Q.E.D.
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Tables and Figures

Number of PLS
factors used (q)

Mean in-sample
R2

Standard Dev. of
in-sample R2

Out-of-sample R2

1 62.55 4.58 50.64
2 72.88 3.74 53.03
3 78.68 3.24 49.32
4 82.02 3.00 46.36
5 84.35 2.78 41.10
6 86.08 2.61 36.91
7 87.40 2.50 33.10
8 88.48 2.40 28.87
9 89.39 2.33 24.45
10 90.17 2.25 18.77

Table 1: In-Sample and Out-of-Sample Percentage R2 of PLS Regressions (R = 2, K = 4)

Figure 1: Graphical Representation of 1
Notes: Spurious correlation ooccurs as more PLS factors are used. This grapf is for the case in which there
are four common latent factors in predictors and two informative PLS factors. Thus, forecasting power is
maximized when the �rst 2 PLS factors are used. The R2

OS of PLS factors signi�cantly decreases as more
than two PLS factors are used while the in-sample adjusted R2 always increases.

71



T = 100, N = 80

ax ay ρc ρe ρf PLS1 PC5 OLS K̂

0.1 0.3 0.0 0.0 0.0 0.137 0.162 -2.851 2.015
0.1 0.3 0.3 0.3 0.3 0.112 0.08 -3.043 2.629
0.1 0.3 0.5 0.5 0.5 0.112 0.072 -2.871 3.191
0.1 0.5 0.0 0.0 0.0 0.241 0.245 -2.268 1.999
0.1 0.5 0.3 0.3 0.3 0.292 0.169 -1.671 2.679
0.1 0.5 0.5 0.5 0.5 0.287 0.151 -2.034 3.139
0.1 0.7 0.0 0.0 0.0 0.350 0.321 -1.790 2.001
0.1 0.7 0.3 0.3 0.3 0.394 0.250 -1.230 2.687
0.1 0.7 0.5 0.5 0.5 0.399 0.205 -0.815 3.012

0.3 0.3 0.0 0.0 0.0 0.230 0.239 -2.706 4.748
0.3 0.3 0.3 0.3 0.3 0.205 0.218 -3.044 3.690
0.3 0.3 0.5 0.5 0.5 0.254 0.250 -3.158 2.921
0.3 0.5 0.0 0.0 0.0 0.404 0.405 -1.559 4.737
0.3 0.5 0.3 0.3 0.3 0.364 0.368 -1.892 3.665
0.3 0.5 0.5 0.5 0.5 0.396 0.389 -1.914 2.934
0.3 0.7 0.0 0.0 0.0 0.599 0.611 -0.889 4.743
0.3 0.7 0.3 0.3 0.3 0.595 0.589 -0.692 3.678
0.3 0.7 0.5 0.5 0.5 0.586 0.578 -0.551 2.895

0.5 0.3 0.0 0.0 0.0 0.282 0.278 -2.553 5.000
0.5 0.3 0.3 0.3 0.3 0.266 0.275 -2.174 4.987
0.5 0.3 0.5 0.5 0.5 0.245 0.243 -3.096 4.781
0.5 0.5 0.0 0.0 0.0 0.454 0.466 -1.531 5.000
0.5 0.5 0.3 0.3 0.3 0.446 0.447 -1.646 4.973
0.5 0.5 0.5 0.5 0.5 0.489 0.500 -1.459 4.825
0.5 0.7 0.0 0.0 0.0 0.622 0.639 -0.575 4.999
0.5 0.7 0.3 0.3 0.3 0.627 0.640 -0.602 4.963
0.5 0.7 0.5 0.5 0.5 0.628 0.645 -0.864 4.806

Table 2: Forecasting Performances of PLS, PC, and OLS Regressions (R = 1, K = 5,
T = 100, N = 80)
Notes: This table shows the forecasting performances of the PLS1, PC5 and OLS regressions under di�erent
data processes. For all cases, data are generated with N = 80 and T = 100. For each case with a combination
of ax, ay, ρc, ρe,and ρf , the highest R

2
OS is marked by bold. The total number of factors in predictor variables

is �ve and Ω∗
F = 5 × I5, so that the optimal number of PLS and PC factors are respectively one and �ve

(R = 1 and K = 5). The term K̂ denotes the estimated number of the latent common factors in predictor
variables by the Eigenvalue Ratio (ER) method of Ahn and Horenstein (2013).
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T = 200, N = 160

ax ay ρc ρe ρf PLS1 PC5 OLS K̂

0.1 0.3 0.0 0.0 0.0 0.175 0.207 -2.989 4.168
0.1 0.3 0.3 0.3 0.3 0.197 0.181 -2.664 2.150
0.1 0.3 0.5 0.5 0.5 0.185 0.132 -2.608 2.203
0.1 0.5 0.0 0.0 0.0 0.354 0.364 -1.847 4.228
0.1 0.5 0.3 0.3 0.3 0.369 0.306 -1.676 2.181
0.1 0.5 0.5 0.5 0.5 0.287 0.206 -2.252 2.211
0.1 0.7 0.0 0.0 0.0 0.524 0.514 -1.212 4.291
0.1 0.7 0.3 0.3 0.3 0.496 0.406 -1.170 2.160
0.1 0.7 0.5 0.5 0.5 0.485 0.332 -0.752 2.192

0.3 0.3 0.0 0.0 0.0 0.262 0.264 -2.221 5.000
0.3 0.3 0.3 0.3 0.3 0.282 0.283 -2.490 5.000
0.3 0.3 0.5 0.5 0.5 0.272 0.279 -2.941 4.988
0.3 0.5 0.0 0.0 0.0 0.473 0.472 -1.495 5.000
0.3 0.5 0.3 0.3 0.3 0.433 0.456 -1.680 5.000
0.3 0.5 0.5 0.5 0.5 0.441 0.458 -1.542 4.982
0.3 0.0 0.0 0.0 0.0 0.636 0.656 -0.817 5.000
0.3 0.7 0.3 0.3 0.3 0.626 0.647 -0.617 5.000
0.3 0.7 0.5 0.5 0.5 0.605 0.620 -0.700 4.959

0.5 0.3 0.0 0.0 0.0 0.270 0.278 -2.359 5.000
0.5 0.3 0.3 0.3 0.3 0.285 0.282 -2.689 5.000
0.5 0.3 0.5 0.5 0.5 0.268 0.279 -2.978 5.000
0.5 0.5 0.0 0.0 0.0 0.429 0.439 -1.447 5.000
0.5 0.5 0.3 0.3 0.3 0.479 0.496 -1.525 5.000
0.5 0.5 0.5 0.5 0.5 0.501 0.516 -1.756 5.000
0.5 0.7 0.0 0.0 0.0 0.641 0.669 -0.738 5.000
0.5 0.7 0.3 0.3 0.3 0.644 0.665 -0.632 5.000
0.5 0.7 0.5 0.5 0.5 0.650 0.666 -0.788 5.000

Table 3: Forecasting Performances of PLS, PC, and OLS Regressions (R = 1, K = 5,
T = 100, N = 80)
Notes: This table shows the forecasting performances of the PLS1, PC5 and OLS regressions under di�erent
data processes. For all cases, data are generated with N = 160 and T = 200. For each case with a
combination of ax, ay, ρc, ρe,and ρf , the highest R2

OS is marked by bold. The total number of factors
in predictor variables is �ve and Ω∗

F = 5 × I5, so that the optimal number of PLS and PC factors are
respectively one and �ve (R = 1 and K = 5). The term K̂ denotes the estimated number of the latent
common factors in predictor variables by the Eigenvalue Ratio (ER) method of Ahn and Horenstein (2013).
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Data generating parameters T = N = 100 T = N = 200

ax ρd ρe ρf PLS1 PLS2 PLS3 PLS1 PLS2 PLS3

0.1 0.0 0.0 0.0 0.462 0.397 0.290 0.612 0.549 0.500
0.1 0.0 0.0 0.3 0.445 0.374 0.243 0.600 0.511 0.457
0.1 0.0 0.0 0.5 0.484 0.421 0.300 0.593 0.517 0.455
0.1 0.3 0.3 00 0.431 0.421 0.359 0.612 0.569 0.519
0.1 0.3 0.3 0.3 0.458 0.450 0.376 0.598 0.561 0.520
0.1 0.3 0.3 0.5 0.424 0.395 0.333 0.603 0.560 0.510
0.1 0.5 0.5 0.0 0.426 0.455 0.446 0.604 0.590 0.517
0.1 0.5 0.5 0.3 0.448 0.462 0.423 0.604 0.594 0.536
0.1 0.5 0.5 0.5 0.416 0.427 0.397 0.581 0.565 0.524
0.2 0.0 0.0 0.0 0.567 0.569 0.448 0.643 0.624 0.556
0.2 0.0 0.0 0.3 0.573 0.574 0.485 0.664 0.639 0.577
0.2 0.0 0.0 0.5 0.562 0.561 0.471 0.646 0.612 0.568
0.2 0.3 0.3 0.0 0.561 0.576 0.524 0.662 0.649 0.595
0.2 0.3 0.3 0.3 0.585 0.592 0.528 0.672 0.654 0.624
0.2 0.3 0.3 0.5 0.565 0.567 0.500 0.664 0.644 0.599
0.2 0.5 0.5 0.0 0.554 0.550 0.506 0.632 0.595 0.573
0.2 0.5 0.5 0.3 0.550 0.551 0.513 0.640 0.613 0.582
0.2 0.5 0.5 0.5 0.559 0.580 0.530 0.634 0.623 0.582
0.3 0.0 0.0 0.0 0.616 0.612 0.525 0.665 0.638 0.584
0.3 0.0 0.0 0.3 0.632 0.640 0.560 0.696 0.668 0.609
0.3 0.0 0.0 0.5 0.629 0.636 0.540 0.677 0.671 0.611
0.3 0.3 0.3 0.0 0.598 0.613 0.545 0.654 0.627 0.585
0.3 0.3 0.3 0.3 0.574 0.605 0.540 0.670 0.653 0.603
0.3 0.3 0.3 0.5 0.621 0.637 0.581 0.698 0.682 0.641
0.3 0.5 0.5 0.0 0.596 0.608 0.566 0.686 0.666 0.626
0.3 0.5 0.5 0.3 0.568 0.596 0.538 0.651 0.643 0.605
0.3 0.5 0.5 0.5 0.610 0.626 0.600 0.662 0.643 0.594

Table 4: Forecasting by Regressions with Di�erent Numbers of PLS Factors (R = K = 3)
Notes: This table reports the forecasting performances of the regressions with three di�erent numbers of
informative PLS factors: one (PLS1), two (PLS2), and three (PLS3). For each data speci�cation, the highest
R2

OS square is marked by bold. The other parameters used to generate the data are set at ay = 0.7 and
Ω∗

F = diag(3, 5, 7).
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Data generating parameters T = N = 1000 T = N = 2000

ax ρd ρe ρf PLS1 PLS2 PLS3 PLS1 PLS2 PLS3

0.1 0.0 0.0 0.0 0.651 0.669 0.614 0.703 0.719 0.692
0.1 0.0 0.0 0.3 0.667 0.684 0.648 0.657 0.672 0.624
0.1 0.0 0.0 0.5 0.670 0.700 0.664 0.696 0.704 0.666
0.1 0.3 0.3 00 0.631 0.663 0.612 0.641 0.654 0.63
0.1 0.3 0.3 0.3 0.681 0.68 0.637 0.692 0.701 0.669
0.1 0.3 0.3 0.5 0.627 0.651 0.611 0.667 0.676 0.644
0.1 0.5 0.5 0.0 0.635 0.652 0.618 0.680 0.695 0.670
0.1 0.5 0.5 0.3 0.681 0.703 0.672 0.716 0.723 0.697
0.1 0.5 0.5 0.5 0.646 0.666 0.628 0.684 0.695 0.668
0.2 0.0 0.0 0.0 0.674 0.694 0.678 0.667 0.680 0.665
0.2 0.0 0.0 0.3 0.701 0.719 0.700 0.683 0.691 0.676
0.2 0.0 0.0 0.5 0.655 0.685 0.666 0.657 0.666 0.649
0.2 0.3 0.3 0.0 0.700 0.722 0.708 0.714 0.727 0.721
0.2 0.3 0.3 0.3 0.673 0.704 0.686 0.687 0.704 0.685
0.2 0.3 0.3 0.5 0.685 0.707 0.681 0.698 0.703 0.693
0.2 0.5 0.5 0.0 0.651 0.688 0.674 0.688 0.709 0.702
0.2 0.5 0.5 0.3 0.657 0.682 0.657 0.683 0.691 0.681
0.2 0.5 0.5 0.5 0.664 0.692 0.666 0.719 0.730 0.724
0.3 0.0 0.0 0.0 0.626 0.656 0.648 0.686 0.699 0.696
0.3 0.0 0.0 0.3 0.651 0.687 0.677 0.701 0.715 0.714
0.3 0.0 0.0 0.5 0.650 0.683 0.678 0.681 0.690 0.689
0.3 0.3 0.3 0.0 0.664 0.700 0.686 0.695 0.712 0.710
0.3 0.3 0.3 0.3 0.643 0.674 0.675 0.675 0.693 0.685
0.3 0.3 0.3 0.5 0.666 0.696 0.686 0.665 0.689 0.681
0.3 0.5 0.5 0.0 0.670 0.695 0.687 0.689 0.710 0.710
0.3 0.5 0.5 0.3 0.653 0.678 0.666 0.690 0.705 0.697
0.3 0.5 0.5 0.5 0.666 0.676 0.667 0.676 0.692 0.689

Table 5: Forecasting by Regressions with Di�erent Numbers of PLS Factors (R = K = 3)
Notes: This table reports the forecasting performances of the regressions with three di�erent numbers of
informative PLS factors: one (PLS1), two (PLS2), and three (PLS3). For each data speci�cation, the highest
R2

OS square is marked by bold. The other parameters used to generate the data are set at ay = 0.7 and
Ω∗

F = diag(3, 5, 7).
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Data generating parameters T = N = 7000 T = N = 10, 000

ax ρd ρe ρf PLS1 PLS2 PLS3 0.731 0.734 0.736

0.1 0.0 0.0 0.0 0.612 0.617 0.613 0.731 0.734 0.736
0.1 0.0 0.0 0.3 0.580 0.590 0.586 0.731 0.735 0.738
0.1 0.0 0.0 0.5 0.579 0.591 0.589 0.739 0.744 0.747
0.1 0.3 0.3 00 0.610 0.616 0.613 0.729 0.733 0.734
0.1 0.3 0.3 0.3 0.579 0.589 0.586 0.729 0.734 0.736
0.1 0.3 0.3 0.5 0.578 0.591 0.59 0.738 0.742 0.745
0.1 0.5 0.5 0.0 0.611 0.617 0.615 0.729 0.733 0.734
0.1 0.5 0.5 0.3 0.579 0.591 0.588 0.729 0.734 0.736
0.1 0.5 0.5 0.5 0.578 0.593 0.592 0.737 0.743 0.745
0.2 0.0 0.0 0.0 0.611 0.615 0.614 0.732 0.736 0.738
0.2 0.0 0.0 0.3 0.579 0.588 0.587 0.732 0.737 0.740
0.2 0.0 0.0 0.5 0.578 0.590 0.590 0.741 0.746 0.748
0.2 0.3 0.3 0.0 0.610 0.615 0.614 0.731 0.736 0.739
0.2 0.3 0.3 0.3 0.578 0.588 0.587 0.74 0.745 0.747
0.2 0.3 0.3 0.5 0.577 0.590 0.590 0.731 0.735 0.737
0.2 0.5 0.5 0.0 0.610 0.616 0.616 0.731 0.736 0.739
0.2 0.5 0.5 0.3 0.578 0.589 0.589 0.739 0.745 0.747
0.2 0.5 0.5 0.5 0.577 0.591 0.592 0.739 0.745 0.747
0.3 0.0 0.0 0.0 0.610 0.615 0.614 0.733 0.737 0.738
0.3 0.0 0.0 0.3 0.578 0.587 0.587 0.733 0.738 0.740
0.3 0.0 0.0 0.5 0.577 0.589 0.59 0.741 0.746 0.749
0.3 0.3 0.3 0.0 0.609 0.615 0.614 0.732 0.736 0.738
0.3 0.3 0.3 0.3 0.577 0.587 0.587 0.732 0.737 0.739
0.3 0.3 0.3 0.5 0.576 0.589 0.590 0.740 0.746 0.748
0.3 0.5 0.5 0.0 0.610 0.615 0.615 0.732 0.736 0.738
0.3 0.5 0.5 0.3 0.577 0.588 0.588 0.732 0.737 0.739
0.3 0.5 0.5 0.5 0.576 0.59 0.591 0.740 0.746 0.748

Table 6: Forecasting by Regressions with Di�erent Numbers of PLS Factors (R = K = 3)
Notes: This table reports the forecasting performances of the regressions with three di�erent numbers of
informative PLS factors: one (PLS1), two (PLS2), and three (PLS3). For each data speci�cation, the highest
R2

OS square is marked by bold. The other parameters used to generate the data are set at ay = 0.7 and
Ω∗

F = diag(3, 5, 7). For the cases with N = T = 10, 000, only 100 di�erent samples are generated for each
data generating processes.

76



Figure 2: Performances of PLS Regression and Spurious Correlation (T = 100)
Notes: The other parameters for data generating processes are set at Ω∗

F = diag(3, 3, 5, 5), R = 2, K = 4,
ax = 0.2, ay = 0.7, and ρf = ρe = ρc = 0.5.
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Figure 3: Performances of PLS Regression and Spurious Correlation (T = 200)
Notes: The other parameters for data generating processes are set at Ω∗

F = diag(3, 3, 5, 5), R = 2, K = 4,
ax = 0.2, ay = 0.7, and ρf = ρe = ρc = 0.5.
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Figure 4: Performances of PLS Regression and Spurious Correlation (T = 500)
Notes: The other parameters for data generating processes are set at Ω∗

F = diag(3, 3, 5, 5), R = 2, K = 4,
ax = 0.2, ay = 0.7, and ρf = ρe = ρc = 0.5.
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Figure 5: Performance of PLS Regression and Spurious Correlation (ax = 0.2)
Notes: The data generating parameters other than ay are set at Ω∗

F = diag(3, 3, 5, 5), R = 2, K = 4,
ax = 0.2, ρf = ρe = ρc = 0.5, and N = T = 100.
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Figure 6: Performance of PLS Regression and Spurious Correlation (ax = 0.5)
Notes: The data generating parameters other than ay are set at Ω∗

F = diag(3, 3, 5, 5), R = 2, K = 4,
ax = 0.5, ρf = ρe = ρc = 0.5, and N = T = 100.
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Figure 7: Performance of PLS Regression and Spurious Correlation (ax = 0.7)
Notes: The data generating parameters other than ay are set at Ω∗

F = diag(3, 3, 5, 5), R = 2, K = 4,
ax = 0.7, ρf = ρe = ρc = 0.5, and N = T = 100.
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Figure 8: Performance of PLS Regression and Spurious Correlation (ay = 0.7)
Notes: The data generating parameters other than ax are set at Ω∗

F = diag(3, 3, 5, 5), R = 2, K = 4,
ay = 0.7, ρf = ρe = ρc = 0.5, and N = T = 100.
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Figure 9: Performance of PLS Regression and Spurious Correlation (ay = 0.5)
Notes: The data generating parameters other than ax are set at Ω∗

F = diag(3, 3, 5, 5), R = 2, K = 4,
ay = 0.5, ρf = ρe = ρc = 0.5, and N = T = 100.
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Figure 10: Performance of PLS Regression and Spurious Correlation (ay = 0.3)
Notes: The data generating parameters other than ax are set at Ω∗

F = diag(3, 3, 5, 5), R = 2, K = 4,
ay = 0.3, ρf = ρe = ρc = 0.5, and N = T = 100.
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Figure 11: Forecasting with Uninformative and Spurious Factors (N = T = 100)
Notes: The parameters for data generating processes other than ax are set at Ω∗

F = diag(3, 3, 5, 5), R = 2, K = 4, ay = 0.7, ρf = ρe = ρc = 0.5, and
N = T = 100.
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Figure 12: Forecasting with Uninformative and Spurious Factors (N = T = 2, 000)
Notes: The parameters for data generating processes other than ax are set at Ω∗

F = diag(3, 3, 5, 5), R = 2, K = 4, ay = 0.7, ρf = ρe = ρc = 0.5, and
N = T = 100.
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Figure 13: Forecasting with Uninformative and Spurious Factors (K = 6, R = 2, N = T = 100)
Notes: The parameters for data generating processes are set at Ω∗

F = diag(3, 3, 3, 3, 5, 5), β∗ = (1, 0, 0, 1, 0, 0)′, R = 2,K = 6, ay = 0.7, ρf = ρe = ρc =
0.5, and N = T = 100.
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Figure 14: Forecasting with Uninformative and Spurious Factors (K = 6, R = 2, N = T = 2, 000)
Notes: The parameters for data generating processes are set at Ω∗

F = diag(3, 3, 3, 3, 5, 5), β∗ = (1, 0, 0, 1, 0, 0)′, R = 2,K = 6, ay = 0.7, ρf = ρe = ρc =
0.5, and N = T = 100.
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Sample Size Cross-

validation

Forecasting with PLS factors CV-estimate of the

optimal number of

PLS factors (R̂CV )

T N N/T CV PLS1 PLS2 PLS3 PLS4 PLS5 PLS6 Mean Std

100 20 0.0 0.40 0.26 0.32 0.36 0.39 0.42 0.43 6.32 3.00

100 60 0.6 0.44 0.47 0.48 0.46 0.42 0.39 0.36 2.45 1.74

100 100 1.0 0.48 0.48 0.52 0.49 0.44 0.41 0.37 2.08 1.14

100 160 1.6 0.58 0.57 0.59 0.56 0.51 0.45 0.39 1.92 1.16

100 200 2.0 0.62 0.62 0.64 0.59 0.52 0.47 0.42 1.87 1.01

200 40 0.2 0.42 0.32 0.38 0.43 0.45 0.45 0.45 6.15 2.76

200 120 0.6 0.56 0.53 0.58 0.56 0.55 0.52 0.50 2.11 1.14

200 200 1.0 0.64 0.62 0.64 0.61 0.55 0.51 0.46 1.86 0.67

200 320 1.6 0.64 0.63 0.65 0.60 0.55 0.49 0.45 1.67 0.58

200 400 2.0 0.65 0.62 0.66 0.62 0.59 0.55 0.51 1.85 0.56

500 100 0.2 0.60 0.57 0.61 0.61 0.61 0.60 0.61 4.42 2.66

500 300 0.6 0.65 0.62 0.66 0.63 0.61 0.59 0.56 1.96 0.42

500 500 1.0 0.68 0.64 0.69 0.65 0.61 0.58 0.54 1.93 0.36

500 800 1.6 0.67 0.66 0.68 0.64 0.60 0.56 0.51 1.88 0.36

500 1000 2.0 0.68 0.65 0.68 0.65 0.63 0.58 0.54 1.84 0.41

Table 7: Relative Forecasting Power of the Cross-Validation Augmented PLS Regression Across Di�erent Sample Sizes
Notes: This table reports the forecasting performances of the regressions with di�erent numbers of the PLS factors and the estimated optimal number
of PLS factors by the cross-validation method we consider. The data used are simulated using a �ve-factor model with Ω∗

F = diag(3, 3, 5, 5, 7) and
β∗ = (1, 0, 1, 0, 1)′. The other data-generating parameters are set at ax = 0.2, ay = 0.7, and ρf = ρe = ρc = 0.5.
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Sample size Cross-

validation

Forecasting with PLS factors Statistics of R̂CV

T N ax CV PLS1 PLS2 PLS3 PLS4 PLS5 PLS6 Mean Std.

100 100 0.1 0.37 0.39 0.40 0.40 0.37 0.34 0.31 2.34 1.71
100 100 0.3 0.59 0.58 0.61 0.59 0.56 0.52 0.49 2.15 1.18
100 100 0.5 0.62 0.61 0.64 0.63 0.58 0.54 0.49 2.04 0.98
100 100 0.7 0.66 0.60 0.67 0.66 0.62 0.60 0.56 2.47 1.05
100 100 0.9 0.69 0.64 0.70 0.70 0.67 0.65 0.64 2.98 1.20
200 200 0.1 0.49 0.47 0.51 0.48 0.45 0.42 0.38 1.95 0.78
200 200 0.3 0.66 0.65 0.66 0.63 0.61 0.57 0.54 1.81 0.64
200 200 0.5 0.69 0.68 0.70 0.67 0.62 0.60 0.55 1.94 0.68
200 200 0.7 0.69 0.66 0.71 0.70 0.65 0.63 0.60 2.26 0.80
200 200 0.9 0.69 0.64 0.69 0.69 0.67 0.63 0.62 2.87 0.98

Table 8: Relative Forecasting Power of the Cross-Validation Augmented PLS Regression Across Di�erent ax's
Notes: This table reports the forecasting performances of the regressions with di�erent numbers of the PLS factors and the estimated optimal number
of PLS factors by the cross-validation method we consider. The data used are simulated using a �ve-factor model with Ω∗

F = diag(3, 3, 5, 5, 7) and
β∗ = (1, 0, 1, 0, 1)′. The other data-generating parameters are set at ay = 0.7, and ρf = ρe = ρc = 0.5.
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Sample size Cross-

validation

Forecasting with PLS factors Statistics of R̂CV

T N ay CV PLS1 PLS2 PLS3 PLS4 PLS5 PLS6 Mean Std.

100 100 0.1 0.01 0.04 -0.12 -0.27 -0.41 -0.55 -0.69 1.16 0.67
100 100 0.3 0.20 0.23 0.16 0.06 -0.05 -0.16 -0.26 1.25 0.63
100 100 0.5 0.32 0.36 0.31 0.22 0.12 0.03 -0.05 1.43 0.85
100 100 0.7 0.46 0.47 0.50 0.48 0.43 0.38 0.34 2.24 1.20
100 100 0.9 0.70 0.64 0.73 0.73 0.72 0.72 0.71 4.18 2.15
200 200 0.1 0.02 0.02 -0.11 -0.25 -0.39 -0.50 -0.63 1.07 0.27
200 200 0.3 0.25 0.26 0.17 0.09 0.00 -0.10 -0.23 1.11 0.33
200 200 0.5 0.44 0.43 0.40 0.31 0.21 0.14 0.05 1.29 0.49
200 200 0.7 0.62 0.61 0.63 0.58 0.53 0.49 0.44 1.65 0.65
200 200 0.9 0.80 0.75 0.81 0.80 0.79 0.79 0.78 3.06 1.20

Table 9: Relative Forecasting Power of the Cross-Validation Augmented PLS Regression Across Di�erent ay's
Notes: This table reports the forecasting performances of the regressions with di�erent numbers of the PLS factors and the estimated optimal number
of PLS factors by the cross-validation method we consider. The data used are simulated using a �ve-factor model with Ω∗

F = diag(3, 3, 5, 5, 7) and
β∗ = (1, 0, 1, 0, 1)′. The other data-generating parameters are set at ax = 0.2, and ρf = ρe = ρc = 0.5.
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Sample size Cross-

validation

Forecasting with PLS factors Statistics of R̂CV

T N ρeu CV PLS1 PLS2 PLS3 PLS4 PLS5 PLS6 Mean Std.

100 100 0.1 0.57 0.58 0.59 0.56 0.51 0.48 0.43 1.99 1.09
100 100 0.3 0.55 0.53 0.56 0.54 0.51 0.47 0.42 2.25 1.33
100 100 0.5 0.57 0.54 0.57 0.57 0.57 0.56 0.55 2.72 1.68
100 100 0.7 0.55 0.52 0.55 0.55 0.56 0.54 0.54 3.70 2.37
100 100 0.9 0.60 0.53 0.58 0.58 0.60 0.60 0.61 5.71 3.25
100 100 1.0 0.88 0.60 0.68 0.71 0.75 0.78 0.81 9.83 0.73
200 200 0.1 0.65 0.64 0.66 0.62 0.59 0.56 0.53 1.79 0.73
200 200 0.3 0.62 0.62 0.64 0.61 0.58 0.54 0.50 1.99 0.79
200 200 0.5 0.63 0.61 0.64 0.62 0.60 0.58 0.57 2.23 1.16
200 200 0.7 0.58 0.56 0.60 0.61 0.60 0.61 0.60 3.32 2.02
200 200 0.9 0.72 0.54 0.64 0.65 0.66 0.67 0.69 7.87 2.77
200 200 1.0 0.85 0.62 0.68 0.69 0.70 0.73 0.76 9.98 0.28

Table 10: Relative Forecasting Power of the Cross-Validation Augmented PLS Regression When Some Predictor Has Direct
Forecasting Power
Notes: This table reports the forecasting performances of the regressions with di�erent numbers of the PLS factors and the estimated optimal number
of PLS factors by the cross-validation method we consider. The �rst predictor's idiosyncratic component is correlated with the error term of the target

variable: e∗1t = ρ
1/2
eu u∗

t+1 + (1 − ρeu)
1/2v∗1t, where the v1t are random draws from N(0, 1). When ρeu = 1, the idiosyncratic component of x1t, e

∗
1t is

perfectly correlated with the error term of the target variable. When ρeu = 0, the data generating process used for this table are identical to those which
is used for Table 1.
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Variables PLS1 PLS2 PLS3 PLS4 PC1 PC2 PC3 PC4 PLS

BIC

PLS

CV

PC

BIC

PC

AH

Industrial Production 34.6 30.6 7.5 -56.7 7.7 22 24.9 29.1 -520.2 33.8 32.3 27.9

Personal Income 34.5 21.9 -14.4 -96.5 11.2 13.8 9.6 10.4 -319.1 30.4 13.7 16.8

Mfg. & Trade Sales 30.8 26.0 -4.6 -54.5 2.7 30.6 26.9 29.1 -559.1 29.6 26 23.7

Nonagg. Employment 46.1 40.2 -0.5 -80.4 38.3 45.7 43.7 43.4 -403 49.9 51.3 46.2

CPI 60.7 60.1 58.3 60.4 59.2 58.6 56.3 54.9 48.8 54.6 55.4 58.4

Consumption De�ator 50.3 48.1 46 47.8 51.4 49.1 45.7 43.2 26.5 45.3 41.6 48.9

CPI except Food 56.9 54.2 52.9 54.5 54.6 52.6 49.6 48.9 42.7 49.8 48.3 51.9

Producer Price Index 65.9 66.2 63.7 66.4 65.3 65.9 65.4 64.9 59.7 65.1 65.1 65.4

Table 11: Forecasting Results for Eight Macroeconomic Variables
Notes: The 100 × R2

OS 's from the regressions with eight economic variables are reported. The highest value of 100 × R2
OS obtained for each variable is

marked by bold.

Categories of Variables PLS1 PLS2 PLS3 PLS4 PC1 PC2 PC3 PC4 PLS

BIC

PLS

CV

PC

BIC

PC

AH

Overall 35.0 34.3 15.6 0.5 24.1 33.8 32.4 33.0 -79.1 30.3 34.2 28.2

Output and Income 34.1 32.7 9.5 -52.5 4.3 16.1 16.5 17.3 -433.6 30.6 29.9 19.4

Labor Market 39.2 41.8 20.4 15.4 28.0 41.5 39.9 38.7 -82.6 40.2 43.5 38.2

Housing 45.5 46.8 27.4 44.0 51.6 52.0 52.4 53.2 35.5 33.6 52.0 54.6

Consumption 13.6 2.8 -46.0 -126.8 -0.4 11.6 10.4 10.6 -598.9 9.5 11.9 6.8

Money and Credit 44.6 47.6 42.3 42.4 39.9 49.2 48.1 46.7 20.3 27.0 42.0 44.3

Interest and Exchange Rates 11.0 -1.8 -16.6 -27.5 11.6 11.1 11.0 8.9 -122.8 5.3 -0.9 12.1

Prices 60.0 57.2 55.6 57.4 59.2 58.9 56.6 54.8 44.2 53.9 55.3 58.4

Stock Market 6.8 -1.6 -23.4 -26.7 8.0 3.2 2.1 -0.8 -150.7 -2.6 1.0 1.5

Table 12: Forecasting Results for 144 Macroeconomic Variables
Notes: The whole 144 target variables are forecasted. The variables are categorized into eight groups. The median value of 100× R2

OS 's is reported for
each category. The highest median value of 100×R2

OS for each category is marked by bold. The category �Consumption� includes consumption, orders,
and inventory variables.
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